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Abstract

This paper presents a formulation of lattice fermions applicable
to all quark masses, large and small. We incorporate interactions
from previous light-fermion and heavy-fermion methods, and thus
ensure a smooth connection to these limiting cases. The couplings in
improved actions are evaluated for arbitrary fermion mass mq, with-
out expansions around small- or large-mass limits. We treat both
the action and external currents. By interpreting on-shell improve-
ment criteria through the lattice theory’s Hamiltonian, one finds that
cutoff artifacts factorize into the form bn(mqa)[pa]

sn , where p is a
momentum characteristic of the system under study, sn is related
to the dimension of the nth interaction, and bn(mqa) is a bounded
function, numerically always O(1) or less. In heavy-quark systems
p is typically rather smaller than the fermion mass mq. Therefore,
artifacts of order (mqa)

s do not arise, even when mqa∼> 1. An impor-
tant by-product of our analysis is an interpretation of the Wilson and
Sheikholeslami-Wohlert actions applied to nonrelativistic fermions.



1 Introduction

The most promising avenue for a quantitative understanding of nonperturbative
quantum chromodynamics—and other field theories—is via numerical (Monte
Carlo) integration of functional integrals defined on a lattice [ 1]. Like any nu-
merical technique this method has uncertainties that must be understood and
controlled before the results are useful. In particular, although the continuum
theory is defined by the limit of a sequence of lattice theories, the numerical
calculations are never carried out at the limit. Because the Monte Carlo intro-
duces statistical errors, the extrapolation to the continuum limit is imperfect.
The results for physical quantities are consequently contaminated by lattice arti-
facts. For a practical result, this uncertainty must be smaller than, say, relevant
experimental uncertainties.

The way to reduce lattice artifacts is based on the renormalization group [
2]. One starts with a general action

S =
∑

n

cnSn, (1.1)

where the Sn include all interactions with the desired field content and the ap-
propriate symmetries. One approach to the continuum limit, which might be
called brute force, is to choose the cn in any way that drives the lattice spacing
to zero. An ideal approach would be to choose the cn to lie on a renormal-
ized trajectory [ 2], where there are no lattice artifacts even though the lattice
spacing a 6= 0. In the space of all possible actions specified by eq. (1.1), the
renormalized trajectories lie in a subspace, whose dimension equals the num-
ber of relevant parameters. Once the relevant parameters have been fixed by
physics, they and the renormalization scheme determine all the cn.

Unfortunately, a renormalized trajectory is mostly of abstract value, because
on one infinitely many cn are nonzero. All practical schemes, such as blocking
fields [ 3] or Symanzik improvement [ 4] use criteria such as locality [ 3] or the
scaling dimension [ 4] to truncate the space of actions. (For an asymptotically
free theory, such as QCD, these two criteria are not very different.) Furthermore,
the calculations of the cn are, in practice, only approximate. For these reasons
an improved action is only partially renormalized. Nevertheless, any practical
action can be written

S = SRT − δS, (1.2)

where SRT denotes (an action on) the renormalized trajectory. Usually the
truncations and/or approximations used to generate S will also yield estimates
for the remaining cutoff effects δS.

This paper treats massive fermions coupled to non-Abelian gauge fields. The
relevant couplings are the fermion masses and the gauge coupling. So the renor-
malized trajectory takes the form

SRT(mq/ΛQCD,ΛQCDa) =
∑

n

cn(m0a, g
2
0)Sn, (1.3)
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where mq denotes the fermion mass,1 ΛQCD is the scale characteristic of the
gauge theory, and the argument ΛQCDa labels the renormalization point. The Sn

are gauge-invariant combinations of four-component fermion and anti-fermion
fields (ψ and ψ̄) and the lattice gauge field (Uµ). For later calculational conve-
nience we choose the bare, rather than some physical, fermion mass m0a and
gauge coupling g2

0 to parameterize the couplings cn.
As a→ 0 the fermion mass mqa is formally smaller than g2

0 . (By asymptotic
freedom g2

0 = [β0 log(Λ2
QCDa

2)]−1 as a→ 0.) It is therefore tempting to expand

the couplings cn(m0a, g
2
0) inm0a, as in previous analyses [ 5, 6, 7]. But there may

be fermions satisfying mq/ΛQCD ≫ 1; the charm, bottom, and top quarks are
examples in nature. If, in practice, mqa is not small, perturbation theory in m0a
need not be useful, even though perturbation theory in g2

0 might be. Indeed,
this regime includes the charm and bottom quarks at currently accessible lattice
spacings.

The static [ 8, 9] and nonrelativistic [ 10, 11, 12] effective theories address
the problems of heavy fermions. Their restriction to mq ≫ ΛQCD implies that
couplings of interactions between particle and antiparticle states may be chosen
to vanish, and the remaining interactions in eq. (1.1) are organized according to
a p/mq expansion. But for some mq ∼ 2ΛQCD the expansion is no longer useful.
Furthermore, radiative corrections induce power-law terms, e.g. g2

0/(mqa), which
must be canceled by adjusting the cn. These terms, which diverge as a→ 0, are
a reminder that the effective theories are to be used at scales below (large) mq.
Their presence implies that cutoff effects in the effective theories should be
removed not by brute force, but by keeping a ∼ m−1

q and constructing actions
systematically closer to the renormalized trajectory [ 11, 12].

This paper presents a way to encompass both the small and large mass
formulations. The doubling problem is handled by Wilson’s method [ 13]. In
addition to treating the m0a dependence of the couplings exactly, the central
idea is to enlarge the class of interactions considered in eq. (1.3) to include
those from both the small m0a and the large mq/ΛQCD limits. In particular,
we do not impose a symmetry between couplings of interactions that would
be related by interchanging the time axis with a spatial axis. For any mqa,
the four-momentum of a quark in most interesting physical systems satisfies
[E(p) − E(0)]a ≪ 1 whenever pa ≪ 1. But when mqa > 1 the characteristic
four-momentum of the physics does not respect time-space axis interchange.
Under such circumstances it is inconvenient and unnecessary to choose an axis-
interchange symmetric action.2

1We use mq for a quark mass defined by a physical condition and m0a for the coupling
appearing in the action.

2Relinquishing axis-interchange symmetry is common in treatments of heavy quarks with
momentum-space and dimensional regulators. It is possible to derive deviations from heavy-
quark symmetry from the Dirac action [ 14, 15], while maintaining time-space axis interchange
invariance as a corollary to Euclidean invariance. But usually the derivations are easier with a
nonrelativistic action [ 10, 16], the so-called the heavy-quark effective theory [ 17].
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In the appropriate limits, our formulation of lattice fermions shares proper-
ties of previous ones. On one hand, at dimension five or less, couplings related
by axis interchange become identical in the limit m0a → 0: the Wilson action
and the improved action of ref. [ 6] are recovered. But when m0a 6= 0 the mass-
dependent renormalization leaves lattice artifacts that are proportional to pa
and ΛQCDa, not mqa. At higher dimension, however, we retain Wilson’s time
derivative and incorporate “spatial-only” interactions into eq. (1.1).

On the other hand, for mq ≫ ΛQCD one can interpret the lattice theory in
a nonrelativistic light. Indeed, all members of our class of actions approach a
universal static limit asm0a→ ∞. Form0a large but finite, the 1/ms

q corrections
to the static limit can be recovered systematically, provided the fermion mass is
defined through the kinetic energy, and provided the general action, eq. (1.3), is
truncated only at dimension 4+ s (or higher). Unlike previous implementations
of nonrelativistic fermions, however, our approach crosses smoothly over into the
regime of tiny lattice spacings, where m0a ≪ 1 even for a heavy quark. Thus,
after several cn have been tuned close to a renormalized trajectory, thereby
removing the worst lattice artifacts, a little brute force can remove the rest.

Because we make no assumptions about the ratio of fermion masses to other
scales, our formulation is especially well suited to fermions too heavy for small
m0a methods yet too light for large mq/ΛQCD methods. With the actions given
below one can test whether a given fermion is heavy enough to be treated nonrel-
ativistically, without resorting to brute-force simulations. A practical example
might be the charm quark, which has a mass only a few times ΛQCD, yet even
on the finest lattices available today mcha is largish, at least 1

3
.

For a concrete determination of the cn, one must choose a renormalization
group, a criterion for truncating the sum in eq. (1.3), and a strategy for deter-
mining the cn. For illustration we adopt here a Symanzik-like procedure [ 4],
organizing the interactions by dimension. Carrying out this program to arbitrar-
ily high dimension would produce a renormalized trajectory of a renormalization
group generated by infinitesimal changes in a. For simplicity, however, most of
this paper treats interactions only up to dimension five. Although a nonpertur-
bative determination of the couplings is possible in principle, this paper makes
the further approximation of perturbation theory in g2

0 , that is

cn(m0a, g
2
0) =

∞∑

l=0

g2l
0 c

[l]
n (m0a). (1.4)

Except for sect. 8 we work to tree level, so we often abbreviate c
[0]
n (m0a) by

cn(m0a). (Explicit one-loop calculations are in progress [ 18].) Within these
approximations we determine the cn by insisting that on-shell quantities take
their desired values, as first suggested by Lüscher and Weisz [ 19].

One calculational procedure is to work out n-point on-shell Green functions
via Feynman diagrams and tune them to the continuum limit, to the appropri-
ate order in p. An example is in sect. 4. Because this strategy is limited to a

3



finite number of quantities, it is nontrivial to assume that other quantities are
improved too [ 4]. An alternative is developed in sect. 5. Starting from the
transfer matrix we derive an expression for the fermion Hamiltonian, valid (at
tree level) for states with pa≪ 1. Because the Hamiltonian is an operator, im-
proving it to some accuracy guarantees the improvement to the same accuracy
of infinitely many c-numbers. We show that by adjusting the couplings cn(m0a)
correctly, and allowing physically unobservable redefinitions of the fermion field,
one can tune the Hamiltonian to the continuum limit, i.e. to the Dirac Hamil-
tonian, to the appropriate order in p.

In addition to equations for the cn, the analysis of the Hamiltonian yields two
important results. One is that the Wilson time derivative needs no improvement.
The other is a canonically normalized fermion field that, to the accuracy of
the improvement, obeys Dirac’s (continuum) equation of motion. This field is
a potent ingredient in calculations of matrix elements involving heavy-quark
systems; see sect. 7.

Owing to the approximations introduced—the truncation of interactions and
perturbation theory—some cutoff effects remain. If these errors are small, they
may be estimated by insertions of δS in correlation functions. If the series for
cn(m0a, g

2
0) has been developed to Ln-th order

δS =
∑

n

∞∑

l=Ln+1

g2l
0 c

[l]
n (m0a)Sn. (1.5)

A typical term in δS distorts an on-shell correlation function by an amount of

order g2l
0 c

[l]
n (m0a)(pa)

sn , where sn = dimSn − 4, and l ≥ Ln + 1. (If Sn is
omitted from the action altogether, then here l = 0.) The analysis presented

below shows that the tree-level, lower-dimension c
[0]
n (m0a) are well-behaved for

all masses. We also show that loop diagrams have the same or more benign

behavior at large mass. In particular, as m0a→ ∞ the c
[l]
n (m0a) either approach

a constant or fall as (mqa)
−s, for some s ≤ sn. These results provide evidence

that the higher-dimension cn(m0a) are well-behaved too.
In Monte Carlo programs it is customary to parameterize the action by the

hopping parameter instead of the mass. In this notation the dimension-three
and -four interactions are written

S0 =
∑

n

ψ̄nψn − κt

∑

n

[
ψ̄n(1 − γ0)Un,0ψn+0̂ + ψ̄n+0̂(1 + γ0)U

†
n,0ψn

]

−κs

∑

n,i

[
ψ̄n(rs − γi)Un,iψn+ı̂ + ψ̄n+ı̂(rs + γi)U

†
n,iψn

]
.

(1.6)

Some terms of dimension five—to solve the doubling problem [ 13]—are included
here too. The relation between the bare mass m0a and the hopping parameters
κt and κs is given below in sect. 2. Eq. (1.6) illustrates how our program
subsumes properties of the familiar small-mass and large-mass formulations.
Imposing axis-interchange invariance would set κs = κt and rs = 1, and then S0
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reduces to the Wilson action [ 13]. Rewriting rsκs = cs and setting κs to zero
with cs 6= 0 produces the simplest nonrelativistic action [ 11].

This pattern continues for dimension-five interactions. Aside from the Wil-
son terms in S0, the other dimension-five interactions are the chromomagnetic
interaction

SB = i

2
cBκs

∑

n;i,j,k

εijkψ̄nσijBn;kψn, (1.7)

and the chromoelectric interaction

SE = icEκs

∑

n;i

ψ̄nσ0iEn;iψn, (1.8)

where B and E are suitable functions of the lattice gauge field U , as in sect. 2.
The light-quark formalism of refs. [ 6, 7] considers the special case cB = cE ,
whereas the heavy-quark formalism of refs. [ 11, 12] sets cE = 0.

The couplings rs, ζ = κs/κt, cB , and cE are specific examples of the cou-
plings cn in eq. (1.3). On the renormalized trajectory they are, therefore, all
functions of m0a. Sect. 4 shows how to adjust rs and ζ so that the relativis-

tic energy-momentum relation E =
√
m2

q + p2 + δElat is obtained for all mqa.

With the correct choice, for which ζ 6= 1 when m0a 6= 0, the (tree-level) lattice
artifact δElat is proportional to p4a3 for mqa ≪ 1 and p4a/m2

q for mqa ≫ 1.
Similarly, results in sect. 5 include functions cB(m0a) and cE(m0a) that reduce
lattice artifacts in the quark-gluon vertex functions to O(p2a2) for mqa≪ 1, or
(yet smaller) O(p2a/mq) for mqa≫ 1.

In their on-shell improvement program refs. [ 19, 6] introduced changes of
variables, or isospectral transformations, to expose redundant interactions. Since
the coupling of a redundant interaction does not influence physical quantities,
one can choose it according to theoretical or computational criteria distinct from
improvement. Sect. 3 examines the isospectral transformations when time-space
axis-interchange symmetry is not imposed. In our formulation many isospectral
transformations are exploited to keep the time discretization, and hence the
transfer matrix, as simple as possible.

The remaining redundant directions can be classified in the Hamiltonian
approach developed in sect. 5. In a Euclidean version of the standard Dirac-
matrix basis, given in sect. 2, matrices are either block diagonal or block off-
diagonal. Block-diagonal transformations are absorbed into a generalized field
normalization. On the other hand, block–off-diagonal transformations (called
Foldy-Wouthuysen-Tani transformations [ 20] in atomic physics) generate leeway
in choosing the mass dependence of associated couplings.3 For example, in the
action S0 +SB +SE one may freely choose rs, as long as the choice circumvents
the doubling problem.

3The off-diagonal interactions are precisely the ones usually omitted from nonrelativistic
formulations, yet their presence in our formulation permits a smooth transition from large to
small mass.
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Our approach breaks down, just as any lattice theory does, when pa is too
large. Fortunately, the typical momenta and mass splittings of hadronic systems
usually are bounded; the energy scale around the fermion mass is dynamically
unimportant. In quarkonia the typical energy-momentum scales are mqv and
mqv

2/2, i.e. 200–800 MeV for charmonium and 200–1400 MeV for bottomonium.
Similarly, in light and heavy-light hadrons the typical momentum scale is ΛQCD,
i.e. 100–300 MeV. In some processes, such as a decaying heavy-quark system that
transfers all its energy into light hadrons, a large three-momentum |p| ≈ mq does
arise. Then our formulation and its predecessors all require further extensions.
One should appreciate, however, that the breakdown arises not from the large
fermion mass per se, but from the large momentum of the decay products.

A by-product of our formalism applies to existing numerical calculations,
done with axis-interchange invariant actions. For mqa∼> 1 (and, furthermore,
mq/ΛQCD ≫ 1) we derive in sect. 9 a nonrelativistic interpretation of such ac-
tions. One then sees that, with a proper definition of the fermion mass, any
action described by S0 + SB + SE , including the Wilson and Sheikholeslami-
Wohlert fermion actions, has the lattice-spacing and/or relativistic inaccuracies
of a typical nonrelativistic action. A practical bonus of the nonrelativistic regime
is that it is no longer necessary to adjust κs differently from κt. In heavy-light
systems, one may also set cB = cE .

This paper is organized as follows: Sect. 2 introduces some notation, includ-
ing a form of the action better suited to perturbation theory, and the Dirac-
matrix convention used in later sections. The isospectral transformation of ref. [
6] is reviewed and generalized in sect. 3, to determine which couplings are redun-
dant. Then, to derive improvement conditions, Feynman-diagram methods are
discussed in sect. 4, and the Hamiltonian method in sect. 5. With a Hamiltonian
description of the lattice theory in hand, sect. 6 estimates cutoff effects in various
hadronic systems. Sect. 7 considers perturbations from the electroweak interac-
tions, needed for the phenomenology of the Standard Model [ 21]. Some of the
issues beyond tree level are outlined in sect. 8. The relationship of our work,
for mq/ΛQCD ≫ 1, to nonrelativistic QCD is pursued in sect. 9. We discuss a
few phenomenologically relevant applications more thoroughly in sect. 10. Fi-
nally, sect. 11 contains selected concluding remarks, and the appendices contain
various technical details.

2 Notation

We shall call the form of the action in eq. (1.6) the “hopping-parameter form.”
For studying the continuum limit and developing perturbation theory it is useful
to present a different form. Let us introduce some notation. The lattice spacing
is a and the site labels are n = x/a. Rescale the fields:

ψn =
a3/2

√
2κt

ψ(x) (2.1)

6



and similarly for ψ̄n. The bare mass is

m0a =
1

2κt
− [1 + rsζ(d− 1)], (2.2)

where d (= 4) is the spacetime dimension, and ζ = κs/κt. With these substitu-
tions the action reads

S0 = m0

∫
ψ̄(x)ψ(x) +

∫ [
ψ̄(x)1

2
(1 + γ0)D

−
0 ψ(x) − ψ̄(x)1

2
(1 − γ0)D

+
0 ψ(x)

]

+ζ

∫
ψ̄(x)γ ·Dψ(x) − 1

2
arsζ

∫
ψ̄(x)△(3)ψ(x),

(2.3)
where the integral sign abbreviates a4∑

x. The covariant difference operators
are conveniently defined via covariant translation operators

T±µψ(x) = U±µ(x)ψ(x ± aµ̂), ψ̄(x)
←
T±µ = ψ̄(x∓ aµ̂)U±µ(x∓ aµ̂), (2.4)

where U−µ(x) = U †µ(x− aµ̂). Then

D+
0 ψ = a−1(T0 − 1)ψ,

D−0 ψ = a−1(1 − T−0)ψ,

Diψ = (2a)−1(Ti − T−i)ψ,

△(3)ψ = a−2
3∑

i=1

(Ti + T−i − 2)ψ,

(2.5)

define various covariant difference operators and the three-dimensional discrete
Laplacian. We shall call the form of the action in eq. (2.3) the “mass form.”

The temporal kinetic energy in eq. (2.3) is written in a way that does not
make the temporal Wilson term explicit. Eq. (2.3) is more convenient, how-
ever, for constructing the transfer matrix, and for comparing with nonrelativis-
tic QCD. The spacelike Wilson term, the one proportional to rs, is needed to
prevent doubling. A convenient choice in computer programs is rs = 1, but we
keep it arbitrary, because other choices may have other advantages.

For constructing the transfer matrix and for examining the nonrelativistic
limit, a useful representation of the Euclidean gamma matrices is

γ0 =

(
1 0
0 −1

)
, γ =

(
0 σ

σ 0

)
, (2.6)

satisfying {γµ, γν} = 2δµν . Another convention that we use is σµν = i
2 [γµ, γν ] so

that σ†µν = +σµν . Using eq. (2.6), σ0i = iαi and σij = −εijkΣk, where

α = γ0γ =

(
0 σ

−σ 0

)
, Σ =

(
σ 0
0 σ

)
. (2.7)
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The following split into upper and lower two-component spinors

ψ =

(
φ
χ∗

)
, ψ̄ = (φ† − χT) (2.8)

follows from eq. (2.6). This convention is chosen so that (the operators corre-
sponding to) φ and χ annihilate particle and anti-particle states, respectively.
With these two-component fields the mass form of the action is

S0 = m0

∫ [
φ†(x)φ(x) + χ†(x)χ(x)

]

+

∫ [
φ†(x)D−0 φ(x) + χ†(x)D−0 χ(x)

]

− 1

2
arsζ

∫ [
φ†(x)△(3)φ(x) + χ†(x)△(3)χ(x)

]

+ ζ

∫ [
φ†(x)σ ·Dχ∗(x) − χT(x)σ ·Dφ(x)

]

(2.9)

This form of the action exhibits explicitly that particles and anti-particles are
treated on the same footing. (Anti-particles transform under the complex-
conjugate representation of the gauge group, however, so U∗ appears instead
of U in the rules (eqs. (2.4)) for covariant translations acting on χ.)

Writing Bn = a2B(x) and En = a2E(x), the four- and two-component mass
forms of the chromomagnetic and chromoelectric interactions are

SB = − i

2
acBζ

∫
ψ̄(x)Σ·B(x)ψ(x)

= − i

2
acBζ

∫
φ†(x)σ ·B(x)φ(x) − χ†(x)σ∗ ·B(x)χ(x),

(2.10)

and

SE = − 1

2
acEζ

∫
ψ̄(x)α·E(x)ψ(x)

= − 1

2
acEζ

∫
φ†(x)σ ·E(x)χ∗(x) + χT(x)σ ·E(x)φ(x),

(2.11)

respectively. Except in a technical step in sect. 5 we take the “four-leaf clover”
lattice approximant to the field strength

Fµν(x) =
1

8a2

∑

µ̄=±µ

ν̄=±ν

sign(µ̄ν̄)Tµ̄Tν̄T−µ̄T−ν̄ − h.c., (2.12)

as introduced in ref. [ 22]. In eqs. (2.10) and (2.11), Bi = 1

2
εijkFjk and Ei = F0i.

As defined here, Fµν , Bi, and Ei are anti-Hermitian; similarly we take anti-
Hermitian gauge-group generators ta† = −ta.
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Table 1: Interactions that could appear in the action, with and without axis-
interchange symmetry (a.i.s.).

dim w/ a.i.s. w/o a.i.s.

3 ψ̄ψ ψ̄ψ
4 ψ̄ /Dψ ψ̄γ0D0ψ ψ̄γ ·Dψ
5 ψ̄ /D2ψ ψ̄D2

0ψ ψ̄(γ ·D)2ψ
iψ̄σµνFµνψ iψ̄Σ·Bψ ψ̄α·Eψ

ψ̄[γ0D0,γ ·D]ψ

3 Redundant Couplings

Before trying to determine the mass dependence of the couplings ζ, rs, cB ,
and cE , one should establish which combinations are physical. The fields in
functional integrals are integration variables, and a change of variables cannot
change the integrals. Interactions that are induced by changes of variables are
redundant; their couplings can be chosen with some leeway, dictated by calcula-
tional or technical convenience, rather than by physical criteria.

A subtle example of a redundancy in the space of interactions is wavefunc-
tion (re)normalization, which multiplies the field by a constant. For fermions,
for example, it is sometimes convenient to fix the kinetic energy ψ̄ /Dψ to have
coefficient unity, which is the mass form of the action, and sometimes to fix the
local term ψ̄ψ to have coefficient unity, which is the hopping-parameter form.
But neither interaction is redundant, even though the normalization convention
drops out of physical quantities.

Otherwise redundant directions are exposed by redefinitions of the field. In
the analysis of ref. [ 6], with axis-interchange symmetry, one considers the trans-
formation

ψ 7→ eεa( /D+m)ψ, ψ̄ 7→ ψ̄eε̄a( /D+m), (3.1)

where a is chosen so that a( /D +m) is “small.” After carrying out the transfor-
mation on the target action

∫
ψ̄( /D +m)ψ, one expands the transformed action

to O(a). One finds changes in the normalization of the lower-dimension terms
and the additional interaction a(ε+ε̄)ψ̄ /D2ψ: from the two independent transfor-
mation parameters, only one combination survives. Hence, of the dimension-five
interactions listed in Table 1, one (i.e. ψ̄ /D2ψ) is redundant, and the other is not.

On the lattice the nearest-neighbor discretization of /D suffers from the dou-
bling problem. Wilson’s prescription adds a nearest-neighbor discretization
of D2 to eliminate the unwanted states. By the preceding analysis [ 6], us-
ing instead /D2 = D2 − iσµνFµν would not change the spectrum at O(a). When
the discretization is chosen to solve the doubling problem, however, the D2

interaction does change the spectrum of high-momentum states. Since they
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communicate with the low-momentum states through virtual processes, lattice
artifacts proportional to g2

0 remain. They can be eliminated with the other
dimension-five interaction, iψ̄σµνFµνψ, with a coupling proportional to g2

0 .
Thus, with axis-interchange symmetry there are four interactions up to di-

mension five, one of which goes with wavefunction normalization (e.g. ψ̄ /Dψ).
One coupling is redundant, and it can be chosen to solve species doubling
(ψ̄ /D2ψ). The other couplings are fixed by the fermion mass (ψ̄ψ) and a physical
improvement condition (iψ̄σµνFµνψ).

When axis-interchange symmetry is given up, the transformation in eq. (3.1)
should be generalized to

ψ 7→ exp
(
εa( /D +m) + δaγ ·D

)
ψ,

ψ̄ 7→ ψ̄ exp
(
ε̄a( /D +m) + δ̄aγ ·D

)
.

(3.2)

Applying this transformation to the target action induces the dimension-five
interactions listed in Table 1. From the four independent transformation pa-
rameters, only three combinations survive: ε+ ε̄, δ + δ̄, and δ − δ̄. Therefore,
the coefficients of ψ̄D2

0ψ, ψ̄(γ ·D)2ψ, and ψ̄[γ0D0,γ ·D]ψ can be chosen arbi-
trarily. The last of these has no redeeming features, so δ − δ̄ should be chosen
so that it never appears.

The other two redundant interactions are again used to solve the doubling
problem. The D2

0 term is used to eliminate states that would make contributions
to the fermion propagator proportional to (−1)t; the factors 1 ± γ0 in eqs. (1.6)
or (2.3) provide the unique choice. Low-energy states with pi ∼ π/a are lifted
by adding the interaction proportional to rs in eqs. (1.6) or (2.3). When the
mass is nonzero, it may prove convenient choose rs to be a function of m0a, so
we leave it arbitrary.

As with axis-interchange symmetry, the chromomagnetic and chromoelectric
interactions are not redundant. Their couplings can be used to remove cutoff
effects once the doubling problem has been eliminated.

Thus, without axis-interchange symmetry there are eight interactions up
to dimension five, one of which goes with wavefunction normalization (e.g.
ψ̄γ0D0ψ). Three couplings are redundant; two can be used to solve species
doubling (ψ̄D2

0ψ and ψ̄(γ ·D)2ψ), and the other to eliminate ψ̄[γ0D0,γ ·D]ψ.
The other couplings are fixed by the fermion mass (m0ψ̄ψ) and three physical
improvement conditions (ζψ̄γ ·Dψ, icBψ̄Σ·Bψ, and cEψ̄α·Eψ).

Redundant combinations of higher-dimension interactions can be exposed
by generalizing the transformation of eq. (3.2). In particular, after dispensing
with axis-interchange symmetry, it is possible to transform away interactions
with higher time derivatives of ψ and ψ̄, in favor of spatial derivatives of ψ
and ψ̄, B and E, and time derivatives of the latter. Indeed, any action with
the Wilson time difference—the first line of eq. (2.3)—has an easy-to-construct
transfer matrix. (This is reviewed in sect. 5.) Consequently, it is possible to
implement eq. (1.3) by adding “spatial-only” interactions to S0.
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4 On-shell Correlation Functions

We now turn to the mass dependence of the tree-level couplings, generically

denoted c
[0]
n (m0a) in eq. (1.4), needed to bring the action closer to the renormal-

ized trajectory. This section uses the fermion propagator to obtain the relation
between the physical mass and the coupling m0a, the correct tuning of the cou-
pling ζ(m0a), and the normalization of the field ψ(x). Since we are interested in
the full mass dependence, we do not expand in the fermion mass. Sect. 5 uses
the Hamiltonian of the lattice theory to clarify and extend the analysis to cB
and cE .

A well-known procedure for determining the couplings [ 4] is to calculate
n-point correlation functions and expand in momentum p. In gauge theories,
however, it is not known whether lattice artifacts can be removed systematically
from Green functions off mass shell. Hence, one expands “on-shell” quantities
instead [ 19]. The (lattice) mass shell specifies the energy at given spatial mo-
mentum p, so on-shell improvement amounts to an expansion in pa. Previous
analyses [ 5, 6, 7] also expanded in the coupling m0a. We simply avoid the latter
expansion, and thus obtain the full mass dependence.

The simplest on-shell correlation function is the fermion propagator as a
function of time and spatial momentum. It is used to relate the bare mass to
a physical mass and to derive the mass dependence of ζ. In the language of
sect. 3, it probes the interactions ψ̄ψ and ψ̄γ ·Dψ, relative to ψ̄γ0D0ψ.

Define C(t,p) through

〈
ψ(t′,p′)ψ̄(t,p)

〉
= (2π)3δ(p′ − p)C(t′ − t,p), (4.1)

where ψ(t,p) = a3∑
xx e
−ipp·xxψ(t,x) and similarly for ψ̄(t,p). Then from eq. (2.3)

C(t,p) =

∫ π

−π

dp0

2π

eip0t

iγ0 sin p0 + iζγ ·S +m0 + 1 − cos p0 + 1

2
rsζp̂

2 , (4.2)

where Si = a−1 sin pia and p̂i = 2a−1 sin(pia/2), but for brevity eq. (4.2) is
given in lattice units. To integrate over p0, proceed as follows: rationalize the
denominator; for t ≥ 0 let z = eip0 , and for t < 0 let z = e−ip0, yielding a
contour integral over the circle |z| = 1; apply the residue theorem to obtain

C(t,p) = Z2e
−E|t| γ0 sign t sinhE − iζγ ·S +m0 + 1 − coshE + 1

2
rsζp̂

2

2 sinhE
(4.3)

for t 6= 0,4 where (restoring a)

coshEa = 1 +
(m0a+ 1

2
rsζp̂

2a2)2 + ζ2S2a2

2(1 +m0a+ 1

2
rsζp̂

2a2)
(4.4)

4To obtain C(0) from eq. (4.3), replace γ0 sign t by 1 on the right-hand side.
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implicitly defines the energy of a state with momentum p. The residue Z2(p) is
given below in eq. (4.12).

Expanding the energy-momentum relation in powers of pa yields

E2 = M2
1 +

M1

M2
p2 + . . . , (4.5)

where the “rest mass”
M1 = E(0), (4.6)

and the “kinetic mass”
M−1

2 = (∂2E/∂p2
i )pp=0. (4.7)

(Any axis i will do to define M2, by spatial axis-interchange symmetry.) The
relativistic mass shell has mq = M1 = M2, and it terminates at p2. From the
tree-level eq. (4.4)

M1 = a−1 log(1 +m0a), (4.8)

and
1

M2a
=

2ζ2

m0a(2 +m0a)
+

rsζ

1 +m0a
. (4.9)

Eq. (4.8) shows how to adjust m0a so that mq = M1. Similarly, eq. (4.9) shows
how to adjust ζ and rs so that mq = M2.

5 Setting M1 = M2 and solving for ζ
yields the (tree-level) condition (setting a = 1 again)

ζ =

√(
rsm0(2 +m0)

4(1 +m0)

)2

+
m0(2 +m0)

2 log(1 +m0)
− rsm0(2 +m0)

4(1 +m0)
. (4.10)

The dimension-five coupling rs is treated here as redundant; it is determined
not by physics, but to solve the doubling problem. To alleviate doubling any
rs(0) > 0 will do, and the most natural choice is rs(0) = 1.

For small mass the Taylor expansion of eq. (4.10) is

ζ = 1+ 1

2
(1− rs(0))m0 − 1

24 [1− 3rs(0)(2+ rs(0))+ 12r′s(0)]m
2
0 + O(m3

0). (4.11)

At m0 = 0 the redundant coupling rs drops out, leaving ζ(0) = 1 unambiguously.
On the other hand, the full mass dependence of ζ can only be prescribed hand-
in-hand with rs. The origin of the link between the two couplings is that both
the kinetic (ψ̄γ·Dψ) and Wilson (ψ̄△(3)ψ) terms contribute to E2 at O(p2). This
and analogous links between couplings’ mass dependence are examined further
in sect. 5 and Appendix A.

Beyond tree level (in perturbation theory or in Monte Carlo calculations)
one would tune ζ according to the same physical principle that led to eq. (4.10):
determine the momentum dependence of the energy of a suitable state and
demand that M1 = E(0) and M2 = (∂2E/∂p2

i )
−1
pp=0

be equal.

5In the κt-κs parametrization (eliminate m0 with eq. (2.2)) this condition is an implicit
transcendental equation. In the m0-ζ parametrization one can solve for ζ explicitly.
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When ζ and m0a have been adjusted so that M1 = M2 = mq, one can rewrite

eq. (4.5) as E =
√
m2

q + p2 + δElat. Expanding eq. (4.4) to p4, one finds the

lattice artifact δElat ∼ p4a3 at small mass and δElat ∼ p4a/M2
2 at large mass.

To reduce δElat further, one must incorporate higher-dimension interactions into
the analysis.

Finally, let us return to the residue Z2 in eq. (4.3). In general, the residue
is a scalar function of four-momentum p, evaluated on shell. With a Euclidean
invariant cutoff, scalar functions can depend only on p2; on shell, with p2 = −m2,
the spatial momentum p drops out. With the lattice cutoff, however, the mass
shell is distorted, cf. eq. (4.4), so three-momentum p dependence can remain.
Indeed, after integrating eq. (4.2) over p0 one finds

Z2(p) =
(
1 +m0a+ 1

2
rsζp̂

2a2
)−1

. (4.12)

Normally one identifies the residue with a (re)normalization of the fermion field.
Now, however, it is appropriate to expand Z2(p) = Z2 + O(p2), where

Z2 = (1 +m0a)
−1 = e−M1a. (4.13)

Then Z
−1/2
2 ψ(x) = eM1a/2ψ(x) has the canonical normalization. In the hopping-

parameter notation the canonically normalized field is
√

1 − 6rsκs ψn. This nota-
tion shows clearly that the approach to the static limit, κs ≪ 1, smooth. Indeed,
eq. (4.13) captures the dominant mass dependence of the field normalization to
all orders in perturbation theory, cf. sect. 8 and ref. [ 18].

One might ask what to make of the momentum dependence of Z2, when the
action is improved to higher dimensions. The residue itself is not observable;
physical quantities are given by ratios of n-point functions and the propagator.
With the correct on-shell improvement, the p2 dependence of untruncated n-
point functions combines with that of Z2 to yield the desired results (to the
order considered).

5 The Hamiltonian

This section introduces another method for deriving conditions on the couplings
in the action. The strategy is to obtain an expansion in the lattice spacing for
the Hamiltonian. For concreteness, we focus on the action S = S0 + SB + SE .
The couplings are then adjusted so that the Hamiltonian of the lattice theory
is equivalent to the Dirac Hamiltonian. The idea is conceptually the same as
on-shell improvement, because the “spectral quantities” of ref. [ 19] are just
eigenvalues of the Hamiltonian. But since the Hamiltonian is an operator, it
contains the information of infinitely many quantities, rather than the finite
number accessible when one computes correlation functions.

This approach reproduces the cn(m0a) derived with on-shell correlation func-
tions. But the analysis is explicitly relativistic, if noncovariant, so one sees
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clearly that the results are general. On the other hand, we have not attempted
to extend the method to four-fermion operators, or to higher orders in g2

0 . The
calculations required by those extensions seem simpler with Feynman diagrams.

There is a further conceptual advantage to the Hamiltonian. Lattice field
theories are almost always formulated in imaginary time. The interpretation of
the results in real time hinges on a good Hamiltonian fixing the dynamics of
the Hilbert space of states [ 2]. Hence the implicit, but seldom stated, goal of
improvement is an improved Hamiltonian; this section merely takes direct aim
on that goal. Moreover, once one accepts the central role of the Hamiltonian,
one appreciates why a satisfactory Hamiltonian Ĥ implies a satisfactory time

evolution e−Ĥa, no matter how large Ĥa is.
In lattice field theory the Hamiltonian is defined through the time evolution

operator, or “transfer matrix” [ 2]. Therefore, sect. 5.1 starts by reviewing and
extending the construction of ref. [ 24] to the actions S0 and S = S0 +SB +SE .
A by-product of this analysis is the demonstration that there is no need to
improve the temporal derivative in eq. (2.3). This feature is familiar from the
static and nonrelativistic formulations. It is a special blessing here, because a
temporal next-nearest-neighbor interaction would introduce unphysical states [
6], and at large m0a the physical and unphysical levels cross. With the transfer
matrix in hand, sects. 5.2 and 5.3 develop an expansion in a for the Hamiltonian
itself.

5.1 Construction of the transfer matrix

The transfer-matrix construction with two hopping parameters differs little from
the usual case [ 24]. The transfer matrix acts as an integral operator in the
space of gauge fields; in the U0 = 1 axial gauge a wave functional Ωt(U) at time
t evolves to

Ωt+1(V ) =

∫ ∏

n,i

dUn,i K(V,U)Ωt(U) (5.1)

at time t+ 1. The wave functional Ωt(U) is also a vector in the fermion Hilbert
space. For the standard gauge action the kernel may be written

K(V,U) = T̂ †F (V )T †G(V )KG(V,U)TG(U)T̂F (U). (5.2)

The factors arising from the fermion action T̂ (†)
F are operators in the fermion

Hilbert space. The factors arising from the gauge field, TG and KG, are given in
ref. [ 24]; in the following, they do not play a crucial role, so we do not discuss
them further.6

6Different from ref. [ 24] is the convention for the factors (1 ± γ0) in the action (compare
eq. (1.6) with eq. (2) of ref. [ 24]). With our convention it is natural for time-ordering to place
later times to the left. Thus, the kernel K(V, U) transfers the field from U at time t to V at
time t + 1.
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The fermion operator for action S0 can be written

T̂F (U) = e−ĤI (U)e−
1

2
Ĥ0(U) det(2κtBU)1/4 (5.3)

where (cf. ref. [ 24])

Ĥ0(U) = ˆ̄ΨMU Ψ̂, (5.4)

ĤI(U) = ζ ˆ̄Ψ1

2
(1 − γ0)γ ·DU Ψ̂, (5.5)

in a matrix notation in which Ψ and Ψ̄ are vectors and BU , DU , and MU are
matrices depending on gauge field U . The vectors and matrices of this notation
are labeled by spin, color, and space. The covariant difference operator D is as
in eq. (2.5) and

B = 1 − rsκs

∑

i

(Ti + T−i), (5.6)

eM =
B

2κt
= 1 +m0 − 1

2
rsζ△(3). (5.7)

The operators Ψ̂ and ˆ̄Ψ = Ψ̂†γ0 obey canonical anti-commutation relations

{Ψ̂mma, Ψ̂
†
nnb} = δmnmnδab, (5.8)

where m and n label spatial sites and a and b are multi-indices for spin and
color. The fields corresponding to these operators are related to the original
fields by

Ψmma = B1/2
mma,nnbψnnb. (5.9)

This discrepancy in normalization between the integration variables in the func-
tional integral and the canonical operators in Hilbert space demonstrates again
that the normalization convention for the field ψ(x), cf. eq. (2.1), is arbitrary.
On the other hand, the propagator of Ψ has unit residue at tree level, and a

perturbative series Z2Ψ = 1 + g2
0Z

[1]
2Ψ(m0a) + · · · beyond tree level.

The generalization of eqs. (5.2)–(5.9) to include the chromoelectric interac-
tions suffers from a technical difficulty. Usually one uses the “four-leaf clovers”
in eq. (2.12) as the lattice approximants to the chromomagnetic and chromoelec-
tric fields. For the chromomagnetic interaction, this choice poses no problem,
because B involves link variables from one timeslice only. For the chromoelec-
tric interaction, however, the time-space four-leaf clover involves link variables
from three timeslices. In that case, the construction of the gauge-field transfer
matrix is more complicated, and, if the improved gauge action is any indication,
it may no longer be positive [ 25].

To avoid this complication one can define a chromoelectric field on only two
timeslices. Consider

SE2 = −cEκs

∑

nn,t

ψ̄nn,t

[
1

2
(1 + γ0)α·Enn,t−1/2 + 1

2
(1 − γ0)α·Enn,t+1/2

]
ψnn,t,

(5.10)
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where

Enn,t±1/2;i = ±1

4

∑

ı̄=±i

sign(̄ı)T±0Tı̄T∓0T−ı̄ − h.c., (5.11)

is defined on a two-leaf clover. The projection operators 1

2
(1 ± γ0) in eq. (5.10)

are chosen by analogy with the Wilson time derivative, cf. eq. (2.3), and as a
result the standard transfer-matrix construction goes through with minor mod-
ifications. The two-leaf version SE2 differs from the four-leaf version SE by an
interaction of dimension six, so it should not alter the tree-level tuning of cE .

Extending the transfer-matrix construction to S0+SB+SE2 (eqs. (1.6), (1.7),
and (5.10)), one finds the following changes. The chromomagnetic interaction
modifies the matrices B and M to

B = 1 − rsκs

∑

i

(Ti + T−i) − icBκsΣ·B, (5.12)

eM =
B

2κt
= 1 +m0 − 1

2
ζ
(
rs△(3) + icBΣ·B

)
. (5.13)

Except for the new B, eqs. (5.8) and (5.9) still hold. The chromoelectric inter-
action, eq. (5.10), modifies the fermion operator T̂F so that it depends on initial
and final gauge fields U and V :

T̂F (V,U) = e−ĤI (V,U)e−
1

2
Ĥ0(U) det(2κtBU )1/4 (5.14)

with Ĥ0 as in eq. (5.4) and M from eq. (5.13), but

ĤI(V,U) = ζ ˆ̄Ψ1

2
(1 − γ0)(γ ·DU − 1

2
cEα·EV,U)Ψ̂,

Ĥ†I (V,U) = ζ ˆ̄Ψ1

2
(1 + γ0)(γ ·DV − 1

2
cEα·EV,U)Ψ̂,

(5.15)

where the subscripts on D and E specify the spatial link fields, out of which
they are constructed. The sign of the chromoelectric term in Ĥ†I can be checked
as follows: in our sign and i conventions ta† = −ta and Euclidean electric fields

are anti-Hermitian operators in the gauge-field Hilbert space, Êa† = −Êa.
Comparing eqs. (5.13) and (5.15) with eqs. (5.7) and (5.5), respectively, one

notices a pattern emerging. Interactions with block-diagonal Dirac matrices ap-
pend to eM, whereas those with block–off-diagonal Dirac matrices modify HI .
This pattern depends only on the special Wilson time derivative and the tech-
nical assumption that all interactions live on only one or two timeslices. It
proves that there is no need to alter the temporal derivative in eq. (2.3): higher-
dimension “spatial” interactions are enough to achieve on-shell improvement, as
asserted at the end of sect. 3.
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5.2 Small a expansion (general considerations)

From the transfer matrix one would like to derive the exact lattice Hamilto-
nian Ĥ = − log K̂. Of course, with this definition the Hamiltonian cannot be
represented by a finite number of local operators. According to the Symanzik
philosophy, however, one ought to expand it in powers of the lattice spacing.
After obtaining the transfer matrix, (higher) time derivatives are no longer a
concern, so the lattice-spacing expansion will hold if the quantities Da, Ba2,
Ea2, . . . , are small.

One can anticipate the expansion by enumerating the terms allowed by sym-
metry:

Ĥ = ˆ̄Ψ
[
b0(m0a)mq + b1(m0a)γ ·Dcont + ab2(m0a)D

2
cont

+iabB(m0a)Σ·Bcont + abE(m0a)α·Econt + · · ·
]
Ψ̂,

(5.16)

where the subscript “cont” refers to an underlying continuum gauge field; below
we usually suppress this subscript, for brevity. The coefficients bi depend onm0a,
and since eq. (5.16) is to be interpreted as an expansion in a (rather than 1/m0),
the bi for small m0a must be O((m0a)

p), with p nonnegative. The coefficients
for the action S0 + SB + SE , given in sect. 5.3, satisfy this requirement.

The general objective is to adjust the couplings so that eq. (5.16) takes the
relativistic Dirac form, i.e. b0 = b1 = 1 and b2 = bB = bE = · · · = 0. But, based
on the considerations of sect. 3, there must be some leeway in the redundant
directions. In the operator formalism adopted here, unitary changes of variables
are possible, and these play the role of the isospectral transformation, eq. (3.2).
Under a change of variables the Hamiltonian becomes

Ĥ ′ = Û(Ĥ + ∂t)Û−1, (5.17)

where ∂t is a derivative with respect to imaginary time, and Û is the unitary
operator implementing the change of variables in Hilbert space. Consider, for
example, the following transformation:

Ψ 7→ exp(−aξ1γ ·D)Ψ,

Ψ̄ 7→ Ψ̄ exp(−aξ1γ ·D),
(5.18)

for which
Û = exp

(
aξ1Ψ̂

†γ ·DΨ̂
)
. (5.19)

Such transformations are familiar from studies of the nonrelativistic limit of the
Dirac equation, where they are called Foldy-Wouthuysen-Tani transformations [
20]. Their characteristic feature is that the exponent is always a block–off-
diagonal Dirac matrix.
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The transformed Hamiltonian Ĥ ′ has an expansion of the same form as in
eq. (5.16), but with transformed coefficients:

b′0 = b0,

b′1 = b1 − 2mqab0ξ1,

b′2 = b2 − 2b1ξ1 + 2mqab0ξ
2
1 ,

b′B = bB − 2b1ξ1 + 2mqab0ξ
2
1 ,

b′E = bE − ξ1.

(5.20)

In light of the transformations, it is, therefore, enough to adjust m0a, ζ, rs, cB ,
and cE , so that for some (hidden) value of ξ1 the transformed Hamiltonian takes

the Dirac form Ĥ ′ = ˆ̄Ψ(mq + γ ·D)Ψ̂. That means that one wants b′0 = b′1 = 1
and b′2 = b′B = b′E = · · · = 0.

The Foldy-Wouthuysen-Tani parameter ξ1 drops out of on-shell quantities.
It is preferable, therefore, to parameterize the redundant direction by one of the
couplings. To this end, it is efficient to note that the following combinations of
the bi’s do not depend on ξ1:

B0 ≡ b0 = b′0,

B1 ≡ b21 − 2mqab0b2 = b′1
2 − 2mqab

′
0b
′
2,

BB ≡ b2 − bB = b′2 − b′B .

(5.21)

A Hamiltonian unitarily equivalent to the Dirac Hamiltonian is then obtained
whenever

B0 = B1 = 1,
BB = 0.

(5.22)

Eqs. (5.21) do not contain an invariant corresponding to bE. This is analo-
gous to the result, eq. (4.11), that the general mass dependence of ζ can only
be determined hand-in-hand with rs. In the present language, that connec-
tion arises as follows. Consider truncating eq. (5.16) at dimension four. Then
only b0 and b1 remain. The Foldy-Wouthuysen-Tani transformation is O(pa),
and superficially not worth considering. If one introduces it anyway, one sees
immediately that b1 changes, and in the transformation law, eq. (5.20), one
power of a has combined with the fermion mass to give mqa. At mqa = 0 the
condition b1 = 1 is enough to determine ζ(0) unambiguously. But to obtain fully
the mass dependence ζ(m0) one must consider simultaneously the interactions
Ψ̄γ ·DΨ and Ψ̄(γ ·D)2Ψ.

A similar fate awaits the coefficient bE and its coupling cE . Consider a
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two-parameter Foldy-Wouthuysen-Tani transformation

Ψ 7→ exp(−aξ1γ ·D − a2ξEα·E)Ψ,

Ψ̄ 7→ Ψ̄ exp(−aξ1γ ·D − a2ξEα·E).
(5.23)

The new parameter ξE introduces changes that are superficially O(p2a2). The
other coefficients are unaffected by ξE, but

b′E = bE − ξ1 − 2mqab0ξE. (5.24)

Again, one power of a has combined with the fermion mass to give mqa. Thus,
the condition bE − ξ1 = 0 is enough to determine only cE(0). The full mass
dependence of cE can only be revealed by considering simultaneously Ψ̄α ·EΨ
and the dimension-six interaction Ψ̄{γ ·D,α·E}Ψ. This analysis is deferred to
Appendix A.

The next subsection adjustsm0a, ζ, rs, and cB to ensure eq. (5.22), and cE(0)
to ensure b′E(0) = 0. For heavy-light systems, the resulting lattice theory has
cutoff artifacts of O(Λ2

QCDa
2) and, only when mQa ≫ 1, (yet smaller) artifacts

of O(Λ2
QCDa/mQ) and of O(Λ2

QCD/m
2
Q) as well. See sect. 6 for details. Moreover,

for quarkonia, the lattice theory is similarly correct through O(v2).

5.3 Small a expansion for S0 + SB + SE

Combining eqs. (5.2) and (5.14), and omitting factors that depend only on the
gauge field, the fermion Hamiltonian of the lattice theory is

Ĥ = − log

[
e−

1

2
Ĥ0(V )e−Ĥ†

I
(V,U) · · · e−ĤI(V,U)e−

1

2
Ĥ0(U)

]
, (5.25)

where H0 is specified by eqs. (5.4) and (5.13), and HI is specified by eq. (5.15).
To derive an expression for the fermion Hamiltonian, one must coalesce the four
exponents in eq. (5.25) into one. Owing to nontrivial commutators between Ĥ0,

ĤI , and Ĥ†I , this is too difficult in general. But through order D2a2, Appendix B
achieves the desired result by a trick. There the field theory is mimicked by a
toy model with the same algebraic structure but only two degrees of freedom.
In the toy model one needs only to take the logarithm of a two-by-two transfer
matrix, and expand the result in powers of a.

For small Da the Hamiltonian becomes

Ĥ ≈ ˆ̄Ψ
[
M1 − ζ

2(1 +m0)

(
rs△(3) + icBΣ·B

)

− iζf1(m0)Θ − ζ2f2(m0)Θ
2
]
Ψ̂ + O(p3a2),

(5.26)

where
Θ = i(γ ·Dcont + 1

2
(1 − cE)α·Econt). (5.27)
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The rest mass M1 and the terms in parentheses come from expanding M, and
the functions fi are extracted from the toy model:

f1(x) =
2(1 + x) log(1 + x)

x(2 + x)
, f2(x) =

f2
1 (x)

2 log(1 + x)
− 1

x(2 + x)
. (5.28)

Note that f1(0) = 1 and f2(0) = 1

2
.

In the spirit of an underlying continuum gauge field one can identify △(3)

with D2
cont, D×D with Bcont, and [∂t,D] with Econt. With these identifications

one can cast eq. (5.26) into the form of eq. (5.16). Thus, the Hamiltonian of the
action S0 + SB + SE has coefficients

b0 = M1/mq,

b1 = ζf1(m0),

b2 = ζ2f2(m0) −
rsζ

2(1 +m0)
,

bB = ζ2f2(m0) −
cBζ

2(1 +m0)
,

bE = 1

2
(1 − cE)ζf1(m0),

(5.29)

and the invariants Bi are

B0 = M1/mq,

B1 = M1/M2,

BB =
1

2MB
− 1

2M2
.

(5.30)

The masses M1 and M2 are as before, and

1

MB
=

2ζ2

m0(2 +m0)
+

cBζ

1 +m0
. (5.31)

After imposing eq. (5.22), M1, M2, and MB all equal the physical mass.
The mass dependence of the couplings follows immediately from eqs. (5.30)

and (5.22). The requirement B1 = 1 implies

ζ =

√(
rsm0(2 +m0)

4(1 +m0)

)2

+
m0(2 +m0)

2 log(1 +m0)
− rsm0(2 +m0)

4(1 +m0)
(5.32)

precisely as in eq. (4.10). The requirement BB = 0 implies

cB = rs. (5.33)

Finally, for small mass the chromoelectric coupling should be tuned to

cE(0) = 1

2
(1 + rs(0)), (5.34)
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to enforce b′E(0) = 0. With the axis-interchange invariant boundary condition
rs(0) = 1, one thus recovers the action of ref. [ 6], with ζ(0) = rs(0) = cE(0) =
cB(0) = 1.

Our analysis has not yet specified the relevant couplings g2
0 and m0a. They,

of course, are fixed not by theory but by experiment. In the Hamiltonian lan-
guage, the bare mass m0a is adjusted so that B0 = 1, i.e. M1 = mq. Then
the improvement conditions, eqs. (5.32)–(5.33), guarantee that mq = M2 = MB

also.
There is a special case of eqs. (5.32)–(5.34) that is of at least passing interest,

namely the one for which the Foldy-Wouthuysen-Tani parameter ξ1 = 0. This
is obtained by choosing rs so that (untransformed) b2 = 0:

rs =
2(1 +m0)

2

m0(2 +m0)
− 1

log(1 +m0)
. (5.35)

Then the condition b1 = 1 requires

ζ =
m0(2 +m0)

2(1 +m0) log(1 +m0)
, (5.36)

and the condition bE = 0 requires

cE = 1, (5.37)

and, as before, the condition bB = 0 requires cB = rs. After substituting
eq. (5.35) into eq. (5.32) one re-obtains the right-hand side of eq. (5.36). Ap-
pendix A shows that—with rs and ζ from eqs. (5.35)–(5.36)—cE = 1 can be
maintained for arbitrary m0a.

6 Truncation Criteria Revisited

This section reexamines criteria for truncating a cutoff theory, with some empha-
sis on the errors left over after truncation. The analysis of the previous sections
takes the scaling dimension of the interaction as a guide. For massless quarks
that is certainly correct. But the most appropriate organization may vary when
the same cutoff theory is applied to different physical systems. Thus, conclusions
about the accuracy of a massive-fermion action must be refined, after deciding
whether the action is to be applied to heavy-light systems or to quarkonia.

After the couplings have been adjusted to some practical accuracy, the
Hamiltonian (possibly after a Foldy-Wouthuysen-Tani transformation) is

Ĥ = ˆ̄Ψ (mq + γ0A0 + γ ·D) Ψ̂ + δĤlat; (6.1)

the Coulomb potential appears if one transforms to a gauge without A0 = 0.
A lattice artifact δĤlat remains, because one cannot exactly incorporate infinitely
many terms into eq. (1.3).
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One can estimate the errors induced by δĤlat by treating it as a perturbation.
There is an advantage to estimating cutoff effects from the Hamiltonian. In the
action formalism, eq. (1.5), it may not be clear how the time discretization
trickles down to physical quantities. But by proceeding through the transfer
matrix these effects are treated exactly.

From the line of argument leading to eq. (5.16), one expects that δĤlat

consists of operators multiplied by mass-dependent coefficients

δĤlat =
∑

n

asn

∞∑

l=Ln+1

g2l
0 b

[l]
n (m0a)Ĥn, (6.2)

where the power sn = dimHn − 4, and Ln is the number of loops already under
control. One can determine the effect of δĤlat on a physical quantity from
order-of-magnitude estimates for the operators Ĥn and general properties of the

coefficients b
[l]
n (m0a). While the former depend on the physical process under

study, the latter are process independent.
The dimension-five, tree-level coefficients have two important properties,

which we believe are generic. First, at asymptotically large m0a the tree-level
coefficients either approach a constant or fall as a power of 1/(m0a). An analysis
of higher-order Feynman diagrams (sect. 8) shows that tree-level patterns persist
to all orders in perturbation theory. Indeed, the asymptotic behavior is presum-
ably a consequence of the heavy-quark symmetries obeyed by all lattice actions
under consideration. Second, the coefficients always contain the recurring ingre-
dients 1 +m0a, m0a(2+m0a), and log(1+m0a) in a way that makes implausible
any combination that would blow up at an intermediate value of m0a. Indeed,
all evidence suggests that the functions b(m0a) are smaller than their low-order
Taylor expansions, once m0a∼> 1.

Let us now discuss the typical size of the operators in the Hamiltonian.
Table 2 gives ballpark estimates for the dimension-three, -four, and -five inter-
actions for three systems: those in which all quarks are light, those with one
heavy quark, and quarkonia. The row labeled E0 in Table 2 gives the non-
trivial dynamical scales, to which artifacts should be compared. In all-light and
heavy-light systems, the estimates start from naive dimensional analysis, but
heavy-quark bilinears with an off-diagonal Dirac matrices are ΛQCD/mQ times
smaller still. In quarkonia, the estimates are those of ref. [ 12], with v denoting
the typical velocity of the heavy (anti-)quark in the bound state (v ∼ αs(mQ)).

A conservative estimate of the artifact is then as follows: Choose a system,
multiply by asn , and compare to E0. The coefficient b(m0a) is a number of
order 1 (or less), for any value of m0a, so its numerical value does not affect
the (conservative) conclusion. If, after suitable adjustment of the couplings, one
finds b ∼ mqa for mqa≪ 1, or b ∼ 1/(mQa) for mQa≫ 1, the artifact might be
even smaller.

Consider the chromoelectric interaction as an example. For the sake of argu-
ment, suppose that the rest mass M1 and the kinetic mass M2, and hence m0a
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Table 2: Estimates of the size of dimension-three, -four, and -five interactions
in systems with only light quarks, with one heavy quark, and in quarkonia. The
latter two columns use mQ to emphasize the heavy-quark mass.

Hn only light heavy-light quarkonia

E0 ΛQCD ΛQCD mqv
2

Ψ̄Ψ 1 1 1
Ψ̄γ ·DΨ ΛQCD Λ2

QCD/mQ mQv
2

Ψ̄D2Ψ Λ2
QCD Λ2

QCD m2
Qv

2

iΨ̄Σ·BΨ Λ2
QCD Λ2

QCD m2
Qv

4

Ψ̄α·EΨ Λ2
QCD Λ3

QCD/mQ m2
Qv

4

and ζ, have been adjusted nonperturbatively. If cE is not adjusted correctly,
then the (transformed) coefficient b′E of the chromoelectric term in the Hamilto-
nian does not vanish. Then, relative to the corresponding E0, there are artifacts
of O(ΛQCDa) for all-light, O(Λ2

QCDa/mQ) for heavy-light, and O(mQav
2) for

heavy-heavy. If instead cE(m0a) is adjusted to cE(0) in eq. (5.34), the artifacts
in all-light systems fall to O(mqΛQCDa

2). With heavy quarks the estimates
depend on mQa. If a is so tiny that mQa≪ 1, then b′E ∼ mQa, and the chromo-
electric artifact is reduced to O(Λ2

QCDa
2) for heavy-light and to O(m2

Qa
2v2) for

heavy-heavy. But ifmQa∼> 1, it turns out that b′E either remains constant or falls
as 1/(mQa), depending on the mass dependence of the redundant coupling rs.
The artifacts are then either O(Λ2

QCDa/mQ) for heavy-light and O(mQav
2) for

heavy-heavy, or 1/(mQa) times smaller.
The appearance of 1/(mQa) in coefficients, in addition to the ΛQCD/mQ in

heavy-light dynamics, makes the error analysis of heavy-light systems somewhat
delicate. Since the 1/(mQa) behavior arises only if mQa ≫ 1, it leads only to
errors that are smaller than the usual discretization errors, relative to E0. On
the other hand, occasionally one is interested in effects that are subleading in
the heavy-quark expansion. For a given lattice action, such quantities may have
a larger relative error. For example, even with cE(0) adjusted correctly, the fine
structure of the heavy-light spectrum, which is O(Λ2

QCD/mQ), suffers a relative

error of order (Λ3
QCDa/mQ)/(Λ2

QCD/mQ) ∼ ΛQCDa.
Similar comments apply to quarkonia. Though the chromomagnetic and

chromoelectric interactions are of order mQv
4/mQv

2 ∼ v2 smaller than the spin-
independent kinetic energy, they introduce relative errors on spin-dependent
structure of order mQv

4/mQv
4 ∼ 1. A full O(v4) analysis requires a few

dimension-six and -seven interactions, which we consider in Appendix A.
Once the dimension-five couplings cB and cE have been properly adjusted,

lattice artifacts remain from dimension six and higher. Table 3 lists bilinear
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Table 3: Estimates of the size of dimension-six bilinear interactions in systems
with only light quarks, with one heavy quark, and in quarkonia. For the actions
considered here, the interactions below the line do not arise at tree level.

Hn only light heavy-light quarkonia

Ψ̄γ0[γ ·D,γ ·E]Ψ Λ3
QCD Λ3

QCD m3
Qv

4

Ψ̄(γ ·D)3Ψ Λ3
QCD Λ4

QCD/mQ m3
Qv

4

Ψ̄γiD
3
i Ψ Λ3

QCD Λ4
QCD/mQ m3

Qv
4

Ψ̄{γ ·D, iΣ·B}Ψ Λ3
QCD Λ4

QCD/mQ m3
Qv

6

iΨ̄γ0Σ·(D0B)Ψ Λ3
QCD Λ4

QCD/mQ m3
Qv

6

Ψ̄γ ·(D0E)Ψ Λ3
QCD Λ5

QCD/m
2
Q m3

Qv
6

Ψ̄γ0(D ·E − E ·D)Ψ Λ3
QCD Λ3

QCD m3
Qv

4

iΨ̄γ ·(D × B + D × B)Ψ Λ3
QCD Λ4

QCD/mQ m3
Qv

6

Table 4: Estimates of the size of dimension-six four-fermion interactions in sys-
tems with only light quarks, with one heavy quark, and in quarkonia. The role
of these interactions can only be treated consistently in concert with the gauge-
field action. The interactions above the line can then be considered redundant,
while those below the line do not arise at tree level.

Hn only light heavy-light quarkonia

(ψ̄γ0t
aψ)2 Λ3

QCD Λ3
QCD m3

Qv
6

(ψ̄γit
aψ)2 Λ3

QCD Λ3
QCD m3

Qv
6

(ψ̄Γtaψ)2, Γ 6= γµ Λ3
QCD Λ3

QCD m3
Qv

6

operators that can appear in the Hamiltonian. The conservative estimate of
the absolute errors caused by these operators is to multiply Table 3 by a2.
When mQa≫ 1, however, some of the contributions may be, as before, a factor
of 1/(mQa) or 1/(mQa)

2 smaller. But, again, this subtlety is only crucial when
quantities subleading in the heavy-quark expansion are at issue.

The four-fermion interactions, listed in Table 4, are also of dimension six.
To generalize the analysis of sect. 3 to encompass these operators, one must
simultaneously treat dimension-six gauge-field interactions [ 6]. The result is
that (ψ̄γ0t

aψ)2 and (ψ̄γit
aψ)2 are redundant [ 6], even without axis-interchange

symmetry. The other four-fermion interactions arise first at the one-loop level.
Let us summarize the main points of this section for heavy-light spectroscopy

with action S0 + SB + SE. After the tree-level adjustments of sect. 5.3 have been
applied, the largest remaining lattice artifacts are O(g2

0ΛQCDa) from the one-loop
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maladjustment of SB +SE and O(Λ2
QCDa

2) from unadjusted dimension-six inter-
actions. The mass dependence of the artifacts is solely in the coefficients b(mqa),
which is a number of order unity at any mass.

7 Electroweak Perturbations

This section extends the formalism of the previous sections to the two- and four-
quark operators of the electroweak Hamiltonian, which may be treated as a first-
order perturbation to QCD. The construction of the renormalized (or continuum-
limit) operator is analogous to the construction of the renormalized trajectory.
Let O denote the continuum operator. Then

O = ZO({m0a}, g2
0)

[
O0 +

∑

n

Cn({m0a}, g2
0)On

]
, (7.1)

where the sum runs over all lattice operators On with the same quantum numbers
as O.7 Like the couplings in the action, the coefficients ZO and Cn are functions
of the relevant couplings, all fermion masses {m0a} and the gauge coupling g2

0 .
Eq. (7.1) is general, but we again consider perturbative expansions in g2

0 ,

ZO({m0a}, g2
0) =

∞∑

l=0

g2l
0 Z

[l]
O ({m0a}),

Cn({m0a}, g2
0) =

∞∑

l=0

g2l
0 C

[l]
n ({m0a}),

(7.2)

and focus on tree level. Previous work [ 7] applied to small masses, but we treat

the mass dependence of Z
[l]
O ({m0a}) and C

[l]
n ({m0a}) exactly. We also do not

impose axis-interchange invariance in classifying the lattice operators On.
The coefficients ZO and Cn can be determined from low-momentum matrix

elements of all On, analogously to sect. 4. In perturbation theory it is enough
to compute matrix elements between quark, anti-quark, and gluon states, both
with lattice and MS regulators. It is essential to impose consistent normalization
conditions. Appendix C derives external-state rules for lattice perturbation
theory. There one finds that the contraction of ψ(x) with a normalized fermion
state corresponds to a factor ulat(ξ,p)N (p), where ulat is a normalized spinor
on the lattice mass shell. The factor

N (p) =

(
µ(p) − coshE

µ(p) sinhE

)1/2

, (7.3)

where (for S0) µ(p) = 1 + m0a + 1

2
rsζp̂

2a2. A relativistic theory has instead

urel(ξ,p)
√
mq/E, where urel and E comply with the relativistic mass shell.

7By convention, the zeroth lattice operator O0 has the same dimension as the continuum-
limit operator O. The role of the other CnOn is to remove terms suppressed (or enhanced!) by
a power of a. The role of ZO is to convert to a preferred renormalization convention.
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Consider the bilinear operator J fg
Γ that creates flavor f and annihilates

flavor g with spin coupling Γ. At tree level its matrix elements should be

〈qb(ξ′,p′)|J fg
Γ |qa(ξ,p)〉= ūb

rel(ξ
′,p′)Γua

rel(ξ,p)
√
mamb/EaE′b δ

bf δag,

〈q̄a(ξ′,p′)|J fg
Γ |q̄b(ξ,p)〉=−v̄b

rel(ξ,p)Γva
rel(ξ

′,p′)
√
mamb/E′aEb δ

bf δag,

〈0|J fg
Γ |qa(ξ,p)q̄b(ξ′,p′)〉= v̄b

rel(ξ
′,p′)Γua

rel(ξ,p)
√
mamb/EaE′b δ

bfδag,

〈qa(ξ,p)q̄b(ξ′,p′)|J fg
Γ |0〉= ūa

rel(ξ,p)Γvb
rel(ξ

′,p′)
√
mamb/EaE

′
b δ

af δbg,

(7.4)

where E
(′)
f is the energy of flavor f with momentum p(′) and mass mf . Note

that the relativistic spinors urel and vrel appear on the right-hand side.
With the right-hand side of eq (7.4) as a target, we now consider lattice

operators On. The simplest lattice bilinear with the correct dimension and
quantum numbers is

Jfg
Γ (x) = ψ̄f (x)Γψg(x), (7.5)

which corresponds to O0 in eq. (7.1). Recall that ψ(x) is the field appearing in
the mass form of the action, eq. (2.3). At tree level the matrix elements are

〈qb(ξ′,p′)|Jfg
Γ |qa(ξ,p)〉= ūb

lat(ξ
′,p′)Γua

lat(ξ,p)Na(p)Nb(p
′) δbf δag,

〈q̄a(ξ′,p′)|Jfg
Γ |q̄b(ξ,p)〉=−v̄b

lat(ξ,p)Γva
lat(ξ

′,p′)Na(p
′)Nb(p) δbfδag ,

〈0|Jfg
Γ |qa(ξ,p)q̄b(ξ′,p′)〉= v̄b

lat(ξ
′,p′)Γua

lat(ξ,p)Na(p)Nb(p
′) δbf δag,

〈qa(ξ,p)q̄b(ξ′,p′)|Jfg
Γ |0〉= ūa

lat(ξ,p)Γvb
lat(ξ

′,p′)Na(p)Nb(p
′) δaf δbg,

(7.6)

where Nf (p) is the normalization factor of flavor f , cf. eq. (7.3). Note that the
lattice spinors ulat and vlat appear on the right-hand side.

Setting p = p′ = 0, the matrix elements differ only because of the fac-
tors N (0). Thus ZΓJΓ has the same zero-momentum matrix elements as the
target JΓ, in all four channels, if the (re)normalization factor

ZΓ(m0fa,m0ga) =
√
µf (0)µg(0) = exp

(
1

2
(M1fa+M1ga)

)
. (7.7)

This is a tree-level result, but the mass dependence shown here remains dominant
to all orders, cf. sect. 8.

Further terms in the three-momentum expansion cannot be matched with-
out considering higher-dimension terms in eq. (7.1). At tree level one sees the
differences between eqs. (7.4) and (7.6) in the factors N 6=

√
m/E and spinors

ulat 6= urel. Eq. (7.1) can therefore be extended to higher dimension by intro-
ducing an improved field. To first order in pa consider

ΨI(x) = eM1a/2
[
1 + ad1γ ·D

]
ψ(x), (7.8)
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with flavor labels implied. Then

J fg
Γ = Ψ̄f

I ΓΨg
I (x) (7.9)

is the target operator of interest, through first order in pa, if d1 is adjusted prop-
erly. Comparing the bracket in eq. (7.8) with those in eqs. (C.25) and (C.27),
one finds

d1 =
ζ(1 +m0a)

m0a(2 +m0a)
− 1

2M2a
, (7.10)

identifying mq = M2.
8

For small mass one finds d1 ∝ m0a; the only O(a) improvement needed is the
normalization factor eM1a/2. At large mass, however, the rotation of eq. (7.8)
becomes important. Analogously to the Hamiltonian coefficients discussed in
sect. 6, when m0a ≫ 1, one has d1 ≈ 1/(2mq). Consequently, the contribution
of d1γ ·D is essential for computing the 1/mq correction to the static limit of
matrix elements of JΓ. Similarly, higher-dimension generalizations of eq. (7.8)
are needed to obtain 1/m2

q and corrections of higher order in 1/mq..
The improved field ΨI(x) in eq. (7.8) coincides, through O(p), with the one

denoted by Ψ in sect. 5. Combining eqs. (5.9) and (5.18), the Foldy-Wouthuysen-
Tani transformed field is

Ψ(x) = exp(aξ1γ ·D)eM/2ψ(x), (7.11)

where ξ1 parameterizes the solution of the tuning conditions. This expression is
(numerically) cumbersome, but one may expand consistently the exponentials
in a. This exercise identifies ξ1 with d1. Indeed, solving b′1 = 1 for ξ1 yields the
right-hand side of eq. (7.10), after replacing the rest mass M1 with the kinetic
mass M2.

8

The special role of Ψ should not be too surprising, because it possesses two
important properties. First, it satisfies canonical anti-commutation relations
and is thus properly normalized. Second, its dynamics are given by the Dirac

Hamiltonian Ĥ = ˆ̄Ψ(mq +γ0A0 +γ·D)Ψ̂—at least at tree level and up to O(p2).
Therefore, any operator built out of the transformed field yields the desired
matrix elements, also at tree level and up to O(p2).

Let us conclude this section with some comments on two other Ansätze for
the currents. A formal argument based on the Ward identity suggests that a
conserved current9 is especially suited to the determination of form factors of
a vector current or the decay amplitude of a vector meson. But although the
Ward identity implies a certain universality in radiative corrections, it does not

imply any special mass dependence at tree (or any other) level.

8The substitution of the kinetic mass M2 for the rest mass M1 is done so that the expression
remains valid under a nonrelativistic interpretation explained in sect. 9.

9Both “Noether” and “gauge” currents are conserved; they differ by σµν terms.
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With standard Feynman rules and Appendix C, straightforward algebra
yields the tree-level on-shell matrix elements. To O(p) the (conserved) gauge
current V G

µ has matrix elements

〈q(ξ′,p′)|V G
0 |q(ξ,p)〉 = δξ′ξ,

〈q(ξ′,p′)|V G
i |q(ξ,p)〉 = −iδξ′ξ p

′
i + pi

2M2
+ ū(ξ′,0)σiju(ξ,0)

p′j − pj

2MB
,

(7.12)

〈0|V G
0 |q(ξ,p)q̄(ξ′,p′)〉 = v̄(ξ′,0)

iγ ·(p′ + p)

2MG
u(ξ,0),

〈0|V G
i |q(ξ,p)q̄(ξ′,p′)〉 = v̄(ξ′,0)γiu(ξ,0)

sinhM1a

MGa
,

(7.13)

through O(pa), where M1, M2, and MB are the tree-level masses,10 but

1

MG
=

2ζ

m0(2 +m0)
+
cEζ[1 + (1 +m0)

2]

2(1 +m0)2
. (7.14)

The Ward identity asserts that these tree-level masses all renormalize in a co-
herent way. But although the “forward-scattering” matrix elements in eq. (7.12)
are correct (assuming M2 = MB = mq), the “annihilation” matrix elements in
eq. (7.13) are not (unless mqa ≪ 1). We conclude, therefore, that V G

µ is not
useful for determining the decay constant of a massive vector meson.

Ref. [ 7] suggests using a “(four-dimensional) rotated current”

Jfg
Γ,rot = ψ̄f (1 + 1

2
a
←
/D)Γ(1 − 1

2
a /D)ψg(x). (7.15)

To ascertain if Jfg
Γ,rot matches the target continuum operator, one must evaluate

matrix elements, as above. The timelike translations in D0 greatly change the
mass dependence. One finds that ZΓ,rotJ

fg
Γ,rot has correctly normalized matrix

elements only if

ZΓ,rot(m0fa,m0ga) =
4ZΓ(m0fa,m0ga)

(2 + sinhM1fa)(2 + sinhM1ga)
, (7.16)

where ZΓ is the normalization factor of the unrotated bilinear, eq. (7.7). More-
over, when mqa 6≪ 1 the rotation of eq. (7.15) must be supplemented à la
eq. (7.8), with the same d1 as in eq. (7.10). Thus, mass-dependent improvement
of eq. (7.15) is analogous to improvement of eq. (7.5), but the latter is simpler.

In summary, the mass dependence of electroweak operators is tractable, if
one proceeds as follows. First, start with a simple operator O0 and expand its
on-shell matrix elements in external, spatial momenta small in lattice units. As
usual, there is no need to expand in m0a. Second, add additional terms CnOn

10For the Noether current the terms proportional to cB (implicitly in 1/MB) and cE (in
1/MG) in eqs. (7.12) and (7.13) would not appear.
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to correct the momentum dependence of the matrix elements. At least to tree
level this step can be accomplished by field rotations, as in eqs. (7.8) and (A.17).
Finally, normalize O0 +

∑
nCnOn to obtain the fully renormalized operator O

in the desired renormalization scheme. For example, through O(pa) the renor-

malized bilinear J fg
Γ is given by eqs. (7.9), (7.8), and (7.10).

8 Beyond Tree Level

In the previous sections, the m0a dependence of the couplings in the action is
derived at tree level. This section considers what happens beyond tree level.

In perturbation theory the expressions for the masses introduced previously
become power series in g2

0 . For example,

E(0) ≡M1 = M
[0]
1 +

∞∑

l=1

g2l
0 M

[l]
1 (8.1)

and (
∂2E

∂p2
i

)−1

pp=0

≡M2 = M
[0]
2 +

∞∑

l=1

g2l
0 M

[l]
2 , (8.2)

where M
[0]
1 and M

[0]
2 are given by eqs. (4.8) and (4.9), respectively. After cal-

culating the self-energy to l loops, one can extract the coefficients M
[l]
i as func-

tions of m0a. The requirement M1 = M2 = mq subsequently yields the per-
turbative power series for the couplings rs and ζ. (Based on the arguments of
sects. 3 and 5, the Wilson term’s coupling rs should be redundant to all orders
in g2

0 .) In the same vein, the on-shell fermion-gluon vertex function to l loops

yields c
[l]
B (m0a) and c

[l]
E (m0a), and electroweak matrix elements to l loops yield

Z
[l]
O (m0a) and d

[l]
i (m0a).

A complete derivation of one-loop corrections is beyond the scope of this pa-
per. It is easy, however, to assess two qualitative features: the mass dependence
of loop diagrams (sect. 8.1) and the expected size of corrections from tadpole
diagrams (sect. 8.2).

8.1 Mass dependence of loop diagrams

This subsection shows that the mass dependence of loop diagrams is benign.
Although we focus on the specific action S = S0 +SB +SE, the conclusions hold
for any action with the Wilson time derivative and arbitrary spatial interactions.
Actions with next-nearest-neighbor interactions in time are problematic starting
at tree level [ 6], so they are not considered here.

Let us first consider vacuum polarization. At one loop it is easy to see
that the lattice-regulated Feynman integrals for vacuum polarization are smooth
functions of the fermion mass. Moreover, for large fermion mass the integrals
vanish as (m0a)

−2; rigorously so, because the momentum-dependent terms in the
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µ, a ν, bµ, a= �g0ta�[0]� = ag20Xab��
Figure 1: Notation for one- and two-gluon vertices.

fermion propagator are bounded. The behavior is the same for a closed fermion
loop with any number of gluons attached. Hence, internal heavy-fermion loops
decouple precisely as expected.

The self-energy and vertex corrections are less trivial, because the external
momenta are set on shell. Fig. 1 shows the one- and two-gluon vertices. For the
action S = S0 + SB + SE (with the four-leaf clover for SE)

Λ
[0]
0 = γ0 cos(p+ 1

2
k)0a− i sin(p + 1

2
k)0a

+ 1

2
cEζσ0j cos 1

2
k0a sin kja,

(8.3)

Λ
[0]
i = ζγi cos(p + 1

2
k)ia− irsζ sin(p+ 1

2
k)ia

− 1

2
cEζσ0j cos 1

2
kja sin k0a+ 1

2
cBζσij cos 1

2
kia sin kja,

(8.4)

where p and k are the incoming fermion and gluon momenta, respectively. The
expression for Xab

µν is not needed, except to note that its mass dependence is

qualitatively the same as Λ
[0]
µ .

A formal way of going to the mass shell is to put p0 = iEγ0, with E from
eq. (4.4). The γ0 in the analytic continuation is not rigorous when applied under

an integral, but the m0a dependence comes out right. The temporal vertex Λ
[0]
0

is proportional to eM
[0]
1 a = 1+m0a. The spatial vertex Λ

[0]
i is proportional to ζ,

which, when it is tuned so that M1 = M2, satisfies rsζ ≈ (1 + m0a)/M1a for
large mass. Similar behavior holds for quark–multi-gluon vertices. Finally, the
inverse propagator is also proportional to 1 +m0a, for p close to the mass shell.

Consider any process with an external fermion line. Loop diagrams can be
built up from the tree diagram by adding more gluons. Each additional vertex
on the external line requires an additional fermion propagator. The dominant
mass dependence of the propagator-and-vertex combination is (1+m0)/(1+m0)
or ζ/(1 +m0), and thus cancels always.
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For example, all diagrams in the self-energy are proportional to 1 + m0a.
After summing the geometric series and integrating over p0 one finds

eM1a = eM
[0]
1 a

[
1 + g2

0M
[1]
1 (m0a) + · · ·

]
, (8.5)

Z−1
2 (m0a) = eM1a

[
1 − g2

0Z
[1]
2 (m0a) + · · ·

]
, (8.6)

where M
[1]
1 (m0a) and Z

[1]
2 (m0a) depend mildly on the mass, varying smoothly

from the value obtained for massless fermions to the value in the static formu-
lation.

The same happens to the fermion-gluon vertex. The gauge-coupling renor-
malization factor is defined through the fermion-gluon vertex via

ZgN (p)ūlat(p)Λµ(p,p)ulat(p)N (p) =
mq

E
ūrel(p)γµurel(p), (8.7)

where Λµ(p′,p) is the full vertex function, including leg contributions.11 In
perturbation theory one usually organizes the calculation by treating the legs
and the proper vertex separately. By gauge invariance

Zg =
Z1

Z
3/2
3

=
Z1F

Z2

√
Z3
, (8.8)

where Z3 (Z2) and Z1 (Z1F) are the gluon (fermion) wavefunction and proper
vertex renormalization factors. The strong mass dependence of Z2 must, there-
fore, cancel against Z1F. (The residual mass dependence of Z1F/Z2 should be
the same as Z1/Z3 to satisfy the expectations of decoupling.) Indeed, at tree
level the temporal vertex provides the asymptotic factor 1 +m0a, and, by the
general argument, the full proper vertex has the same (dominant) mass behavior
to all orders. Hence,

Z−1
1F (m0a) = eM1a

[
1 − g2

0Z
[1]
1F(m0a) + . . .

]
, (8.9)

where Z
[1]
1F(m0a) again depends only mildly on the mass. With the spatial ver-

tex Λ
[0]
i the factor ζ compensates for the missing factor of 1 +m0a to ensure

that 1/M2 appears, so the 1 +m0a counting is the same.
For electroweak currents and four-quark operators, the analysis of the mass

dependence is similar. Again, loop diagrams have the same leading mass de-
pendence as tree diagrams for the same process. For example, the bilinear Jfg

Γ ,
defined in eq. (7.5), has renormalization constant

ZΓ(mfa,mga) = e(M1f a+M1ga)/2
[
1 + g2

0Z
[1]
Γ (m0fa,m0ga) + · · ·

]
. (8.10)

11At tree level one verifies Z
[0]
g = 1 from Λ

[0]
0 , and also from Λ

[0]
i if mq = M2.
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The mass dependence of the loop corrections Z
[l]
Γ (m0fa,m0ga) smoothly connects

massless and static results. Such behavior is borne out in sect. 10’s nonpertur-
bative check of the local vector current, for which Γ = γ0.

The considerations of this subsection argue that the large-mass limit of ac-
tions described by eq. (1.3) is well-behaved in perturbation theory. More gener-
ally, the physical masses and, hence, the couplings could depend on the gauge
coupling in a nonperturbative way. But because the origin of the gauge-coupling
dependence is the region of momentum space near the cutoff, it seems unlikely
that nonperturbative contributions would overwhelm the perturbative contri-
bution, at least once the cutoff is large enough. Should perturbation theory
prove inadequate, however, a nonperturbative renormalization group could, in
principle, substitute for perturbative calculations.12 Nevertheless, it seems im-
plausible that nonperturbative effects are more worrisome at large mass than at
small. Thus, the main conclusion, that the large-mass behavior of interacting
fermions is benign, is probably valid nonperturbatively.

8.2 Mean field theory

To estimate the one-loop corrections, recall that the dominant contributions
come (in Feynman gauge) from tadpole diagrams, which originate from higher-
order terms in the expansion of the link matrix Uµ = 1+ g0Aµ + 1

2
g2
0A

2
µ + · · ·. It

is possible to make this observation more systematic [ 23]. Wherever the gauge
field appears, substitute

Uµ(x) → u0 [Uµ(x)/u0], (8.11)

where u0 is a gauge-invariant average of the link matrices. The substitution
should be understood in the following sense: The second factor [Uµ/u0] produces
perturbative series with small coefficients. The first factor u0, which has a nasty
tadpole-dominated perturbative series, should be absorbed into the couplings cn
and into renormalization factors ZO. When a numerical value for u0 is needed,
for example in a Monte Carlo calculation, it should be taken from the Monte
Carlo itself.

With this prescription the hopping-parameter form of S0 remains as in
eq. (1.6), but with Uµ → Uµ/u0 and

κs,t → κ̃s,t = u0κs,t. (8.12)

The mass form of S0 is given by eqs. (2.3) but with difference operators defined
with

T̃±µ = u−1
0 T±µ, (8.13)

instead of T±µ, and mass

12For example, to tune ζ nonperturbatively, compute the energy of a meson and imposing
Mq = M2.
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m̃0a =
1

2κ̃t
− [1 + rsζ(d− 1)] =

m0a

u0
+ [1 + rsζ(d− 1)]

(
u−1

0 − 1
)

(8.14)

instead of m0. Finally, an overall factor of u0 multiplies each term in the action.
The clover-leaf construction used to define the chromomagnetic and chromo-

electric fields contains products of four U matrices. If one replaces the gauge
fields B and E with tadpole-improved clovers, the interactions SB and SE are
given by eqs. (1.7) and (1.8), respectively, but with

c̃B = u3
0cB , c̃E = u3

0cE , (8.15)

instead of cB and cE , and κ̃s instead of κs. The fourth factor of u0 corresponds
to the overall factor mentioned above.

After these rearrangements one can immediately generalize the expressions
in sects. 4 and 5 to the mean-field level. They remain the same as before,
but with m0 → m̃0, cB → c̃B , and cE → c̃E . Consequently, the couplings ζ,
c̃B , and c̃E(0) should be adjusted to the right-hand sides of eqs. (5.32)–(5.34),
but with m0 → m̃0. The resulting conditions represent a set of mean-field-
theory predictions at g2

0 6= 0, given a nonperturbative input for u0. One-loop
calculations with m0 6= 0, cB 6= 0, and cE 6= 0 will test and correct mean-field
theory estimates.

At currently accessible lattice spacings ref. [ 23] has shown that, with this
mean-field reorganization and a sensible choice of expansion parameter, the
bare perturbative series converges quickly in many cases. Calculations [ 18]
in one-loop perturbation theory of Feynman diagrams needed to determine the

c
[1]
n (m0a) show a smooth transition from the massless to the static limits.13 One

therefore expects the essential concepts of ref. [ 23] to apply to the c̃n and to the
coefficients in eq. (7.1) too. Indeed, in the one case for which a nonperturbative
check is unambiguous, the normalization of the vector current, there is excellent
agreement with mean-field theory, cf. fig. 4 in sect. 10.

9 The Nonrelativistic Limit

It is illuminating to adapt the methods of sect. 5 to the nonrelativistic and static
limits. Rather than adjusting the couplings to obtain the Dirac Hamiltonian,
one could instead aim for the nonrelativistic Pauli Hamiltonian (and generaliza-
tions thereof). An advantage of this avenue is that it provides a useful physical
picture even when the couplings are maladjusted, in particular when ζ = 1.
Many Monte Carlo studies have used actions with ζ = 1, and it would be help-
ful to have a framework for interpreting their data in the heavy-quark regime.
Indeed, the analysis of this section shows that ζ = 1 is acceptable for nonrel-
ativistic fermions. Even the Wilson action (somewhat crudely) approximates

13For tadpole and scale-choice improvement [ 23] of the static limit and of nonrelativistic
QCD, see refs. [ 26, 27].
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the properties of nonrelativistic or heavy-quark effective theory, provided m0a
is adjusted correctly. Similarly, the Sheikholeslami-Wohlert action is a better
approximation.

The Hamiltonian of the action S0 + SB + SE can be brought to the nonrel-
ativistic Pauli form with the Foldy-Wouthuysen-Tani transformation. Imagine
transforming the γ ·D and α·E terms away completely. Afterwards, the trans-
formed Hamiltonian reads

Ĥ ′ ≈ ˆ̄Ψ

(
M1 + γ0A0 −

D2

2M2
− iΣ·B

2MB
− γ0

[γ ·D,γ ·E]

8M2
E

)
Ψ̂, (9.1)

where M1, M2, and MB are as in sects. 4 and 5. The new mass ME reduces
to M2 with suitable mass dependence of cE (cf. Appendix A), or as m0a → 0.
The specific expression is not needed here. The Pauli form of eq. (9.1) has
no coupling between the upper (particle) and lower (anti-particle) components
of Ψ, as in the explicitly nonrelativistic formulations [ 11, 12]. Here, however,
eq. (9.1) is derived within the lattice theory, rather than being an Ansatz for an
effective lattice theory.

Let us discuss the physics of each term in eq. (9.1). The first three are the
rest mass, Coulomb potential, and kinetic energy14 of the fermion. The Σ ·B
term, as one recalls from atomic physics, produces the hyperfine splitting. The
last term can be rewritten

[γ ·D,γ ·E] = iΣ·(D × E − E × D) + (D ·E − E ·D). (9.2)

The two parentheses give the (non-Abelian) spin-orbit and Darwin interactions,
respectively.

The Pauli Hamiltonian is quantitatively useful only if the fermion is nonrel-
ativistic. Given nonrelativistic velocities, however, eq. (9.1) remains applicable
even when the various masses are unequal. Fig. 2 is a sketch of the quarkonium
spectrum, illustrating how the masses affect the spectrum. The interesting gross
feature of the spectrum is not the overall mass gap—close to 2M1—but the pat-
tern of radial and orbital excitations, e.g. m2S − m1S or m1P − m1S. These
splittings are dictated by the kinetic mass M2. Following the analysis of ref. [
12] they are of order M2v

2, where v is the typical velocity of a heavy quark in
quarkonium. (v ∼ 0.3 for charmonium, and v ∼ 0.1 for bottomonium.) Further
application of the velocity counting in ref. [ 12] to eq. (9.1) shows that the hy-
perfine splittings are Σ ·B/MB ∼ M2

2 v
4/MB , and the spin-orbit splittings are

[γ ·D,γ ·E]/M2
E ∼M3

2 v
4/M2

E .
The preceding paragraph merely reviews the well-known argument that the

rest mass of a nonrelativistic particle decouples from the interesting dynamics.
In our formalism the reasoning suggests the following strategy: forget about M1

and adjust the bare mass so that the kinetic mass M2 takes the physical value.

14Because of this physical interpretation the quantity M2, defined in eq. (4.7), is called the
kinetic mass.
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Figure 2: Quarkonium spectrum and the influence of the masses M1, M2, MB ,
and ME. (A similar picture applies to the heavy-light spectrum, except the
overall gap is M1 instead of 2M1, and orbital and radial excitations are set by
ΛQCD instead of M2v

2.)

Meanwhile, choose the coupling ζ by convenience. The obvious example is to
take ζ = 1, as in the Wilson and Sheikholeslami-Wohlert actions.

Since the Wilson and Sheikholeslami-Wohlert actions represent viable non-
relativistic field theories, it makes sense to compare them to the explicitly non-
relativistic theories. The (tree-level) masses for the Wilson action are plotted as
a function of m0a in fig. 3. Assuming m0a is chosen so that M2 = mq, the other
masses satisfy M1 < mq, M

−1
B < m−1

q , and M−1
E < m−1

q . The simplest form of

nonrelativistic QCD [ 11] has Hamiltonian ĤNR = ˆ̄ΨD2Ψ̂/(2mq). Thus, in our
notation, ĤNR has M1 = 0 and M−1

B = M−1
E = 0. Thus, the Hamiltonians of

the Wilson and simplest nonrelativistic theories make the same errors qualita-
tively. For example, in both one expects the fine and hyperfine splittings to be
too small. Similarly, for the Sheikholeslami-Wohlert action one finds MB = M2,
and thus good hyperfine splittings, but M−1

E > m−1
q , so the splittings between

χJ states ought to be too large. To obtain the correct spin-orbit splittings, one
needs the mass dependence of cE , cf. Appendix A.

A parallel set of remarks applies to heavy-light systems. The Hamiltonian
of the lattice theory satisfies the usual heavy-quark symmetries as mq → ∞,
no matter what M2, MB, and ME are. On the other hand, the lattice theory
possesses the right15 1/mQ corrections only if M2 = MB = mQ. A computation
with the Wilson action and mQ = M2 obtains spin-averaged features correctly,
but underestimates the chromomagnetic 1/mQ corrections. Compared to cor-

15Many phenomenological applications require matrix elements of operators of the elec-
troweak Hamiltonian. These operators must also be constructed to the appropriate order
in 1/mQ, cf. sect. 7. In particular, to first order in 1/mQ the coefficient d1 must be chosen
according to eq. (7.10).
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Figure 3: The (tree-level) masses for Wilson fermions (ζ = 1, rs = 1). By
happenstance M2 is always within 15% of m0, which is a result of a conspiracy
between the γ ·D and Wilson terms.

rections from the kinetic energy, the spin dependent effects are thought to be
small [ 17], so again the most essential adjustment is M2 = mQ. A better com-
putation with the Sheikholeslami-Wohlert action and mQ = M2 = MB obtains
all15 1/mQ features correctly.

Despite the similarity between previous nonrelativistic field theories [ 8, 9, 10,
11, 12] and the view adopted in this section, there are significant technical differ-
ences. The four-component approach explicitly includes the terms m0ψ̄(x)ψ(x)
and terms that couple upper and lower components, such as ψ̄(x)γ ·Dψ(x)
and ψ̄(x)α·Eψ(x). The program of Lepage, et al, [ 12] omits these interac-
tions in practice, though perhaps not in principle. There are advantages to
leaving out the Dirac block–off-diagonal interactions. Fermion propagators are
the solution of a (one-sweep) initial-value problem, whereas they are otherwise
the solution of a boundary-value problem, solvable only by iteration; with fewer
interactions, perturbation theory is easier [ 27]. On the other hand, these in-
teractions are necessary to take a → 0 (by brute force) without the scourge of
power-law divergences, or to reach into the semirelativistic regime.
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10 Numerical Tests and Applications

With a few examples this section tests the results of the previous sections with
Monte Carlo data. All data were generated with the axis-interchange symmetric
Wilson or Sheikholeslami-Wohlert actions, so as mqa increases, we rely on the
nonrelativistic interpretation of sect. 9. The tests verify the most important
lessons. The bare mass should be adjusted until the kinetic mass M2, defined in
eq. (4.7), takes the desired value. In particular, in an extrapolation to vanishing
lattice spacing, one ought to hold the kinetic mass16 fixed. On the other hand,
the dynamically irrelevant rest mass may deviate from mq. For matrix elements,
it is also important to use the improved field ΨI of eq. (7.8) or (A.17). The factor
eM1a/2 is more important than the bracket in eq. (7.8), because it guarantees a
smooth approach to the static limit.17

First, consider the mass spectrum, in particular the hyperfine splitting in
heavy-light systems. By heavy-quark spin symmetry the vector-pseudoscalar
mass difference mV −mP is expected to be proportional to 1/mQ. Obviously
the leading term in the summV +mP is proportional to mQ, so the combination
m2

V −m2
P should be nearly independent of mQ. Numerical work [ 28, 29] found,

however, that m2
V −m2

P decreases for increasing mQ, with lattice spacing a
held fixed. These analyses take mV and mP from the rest mass. From sect. 9
the rest mass M1 of the quark governs the rest mass of the mesons, while the
chromomagnetic mass MB governs the hyperfine splitting. The computed lattice
quantity, therefore, is proportional to M1/MB , which decreases for increasing
quark mass, cf. fig. 3. Given M1, MB is not as large with the Sheikholeslami-
Wohlert action as with the Wilson action. Numerical data with cB = 1 show
behavior [ 29] qualitatively similar to cB = 0.

To improve the determination of mV −mP one should tune to the kinetic
mass instead of the rest mass and use the mean-field or one-loop estimate of cB .
The chosen value of cB could be tested in quarkonia. Then in heavy-light systems
one could verify two predictions of heavy-quark symmetry, as applied to the
lattice theory: a falling M1/MB behavior when using the mesons’ rest masses,
and a flat M2/MB behavior when using the mesons’ kinetic masses.

Next, consider the improvement and normalization of multi-quark operators
from sect. 7. The normalization of the vector current can be checked nonper-
turbatively. The fermion number

Nh(H) = 〈H|2κtZV ψ̄
h
xγ0ψ

h
x |H〉 =

〈ΦH2κtZV ψ̄
h
xγ0ψ

h
xΦ†H〉

〈ΦHΦ†H〉
(10.1)

counts the number of h-flavored fermions in |H〉. If |H〉 has one and only one h
in it, the condition Nh = 1 defines the factor 2κtZV .18 Fig. 4 compares this non-

16This can be done nonperturbatively with a meson instead of a quark state.
17Neglecting the bracket introduces only O(m0ppa2) lattice artifacts at m0a ≪ 1, but

O(pp/mq) at m0a∼> 1.
18In the notation of sect. 8, ZV = Zγµ

and ZA = Zγµγ5
.
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Figure 4: The charge normalization factor 2κZV vs. (κc − κ)/(κc − 3κ/4) =
(1 − 8κ̃)/(1 − 6κ̃) = m̃0/(1 + m̃0), with u0 = 1/8κc. The symbols are Monte
Carlo determinations with rs = ζ = 1 and cB = cE = c. The solid square is
the exact result for κ = 0. The solid curve is the mean-field approximation to
eq. (7.7), 2κZV = 1 − 6κ̃. The dashed curve is a mean-field Ansatz 2κ̃, which
(foolishly) neglects the mass dependence.

perturbative definition of 2κZV with the mean-field-improved, tree-level pertur-
bative approximation. The symbols are from Monte Carlo calculations [ 30] of
eq. (10.1), with |H〉 a meson with a spectator anti-quark of different flavor, and
the solid curve is the mean-field improved, tree-level approximation 2κ(1+m̃0h).
Fig. 4 exhibits several interesting features. The solid curve accurately tracks the
dominant mass dependence from m̃0 = 0 to m̃0 = ∞. From eq. (8.10) one ex-

pects a subdominant mass dependence from loop corrections Z
[l]
V (m0ha). Indeed,

near m̃0 = 0 the massless one-loop correction [ 31, 32] accounts quantitatively for
the discrepancy, and near m̃0 = ∞ the discrepancy becomes smaller, in accord
with a Ward identity, which requires 2κZV = 1 at infinite mass [ 33]. Neglecting
the dominant mass dependence, as in the dashed curve, is obviously completely
wrong for m̃0 ∼> 1.

Finally, consider the decay constant of a heavy-light pseudoscalar meson,
computed with the local axial current Jub

µ5(x) = ψ̄u(x)γµγ5ψ
b(x). Fig. 5 shows

Monte Carlo data [ 34, 35] at β = 5.7 (for which a−1 ≈ 1 GeV) for
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Figure 5: φP =
√
mP fP vs. 1/mq. Squares represent results from the con-

ventional zero-mass normalization, plotted versus 1/M1. Circles represent the
same results with the correct normalization, plotted versus 1/M2. The points
for m−1

q > 0 are obtained with the Wilson action [ 34]. The static (m−1
q = 0)

point is from Ref. [ 35]. The curves guide the eye, and the approximate location
of the physical B and D mesons is shown.

φP =
√

2 〈0|Zub
A Jub

µ5|P,0〉 =
√
mP fP vµ, (10.2)

where vµ is the meson’s four-velocity. (The vacuum and one-meson states are
normalized to unity.) We have deliberately chosen a largish lattice spacing to
enhance lattice artifacts, and thus test our control over them. We analyze the
data two different ways. The lower set of points takes the meson mass from the
rest mass and neglects the factor18 Zub

A = eM1ba/2 in eq. (7.8). As suggested
by the curve, the neglectful analysis would produce a locus of points that ap-
proaches zero in the static limit. The upper set of points uses the normalization
factor, and—just as important—it defines the meson mass through a mean-field
approximation to the kinetic mass.19 Fig. 5 shows how crucial both refinements
are, if the Wilson-action data are to approach the static limit smoothly.

An important application of a plot like fig. 5 is to compute the slope in
1/mq. In the heavy-quark effective theory the slope is seen to arise from three
sources: the kinetic energy, the chromomagnetic interaction, and a correction to

19Ref. [ 34] provides hopping parameters and rest masses only, but the mean-field approxi-
mation is adequate for illustrative purposes.
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the infinite-mass current [ 17]. The lattice theory has direct analogs: the kinetic
energy requires tuning M2 = mq, the chromomagnetic contribution requires
tuning MB = mq, and the local lattice current requires a correction, given most
compactly by eqs. (7.8) and (7.10). All three ingredients are needed to obtain
the correct slope [ 36].

11 Conclusions

This paper (and conference reports [ 37, 18, 36] anticipating it) provides the
foundations of a theory of lattice fermions, valid at any mass—large or small.
The action starts with a set of interactions that encompasses those of both light-
fermion actions [ 13, 6] and heavy-fermion actions [ 10, 11, 12]. The couplings of
such a general action are then tuned in successive approximations to the renor-
malized trajectory. In applying renormalization-group techniques to analyze and
reduce cutoff effects we do not, however, expand in either mqa or ΛQCD/mq.

Although there are several methods for tuning the action (for example, refs. [
38, 39]), our analysis is based on Symanzik-like, on-shell improvement criteria.
This entails the computation of on-shell correlation functions, or, equivalently,
of the Hamiltonian. Enforcing continuum-limit behavior—for example the rela-
tivistic mass shell—yields conditions on couplings of higher-dimension interac-
tions. In practice, we here compute on-shell quantities in (tadpole-improved)
perturbation theory.

An examination of the lattice theory’s Hamiltonian, derived from the trans-
fer matrix, is especially illuminating. It shows that it is unnecessary to im-
prove Wilson’s discretization of the time derivative. Instead higher-dimension
interactions can be built from fields on one (or, in some cases, two adjacent)
timeslices. Thus, our class of improved lattice actions automatically has an
easy-to-construct transfer matrix. The actions, consequently, all automatically
satisfy heavy-quark symmetries in the limit of large mass.

The Hamiltonian is a useful tool for examining lattice artifacts. A term of
dimension s+ 4 factorizes as

δĤlat = asb(mqa, g
2)Ĥ, (11.1)

with dependence on the theory’s relevant couplings, mqa and g2, in the coeffi-
cient b. From this expression it is plain how the artifacts behave as the mass
increases: the absolute error induced by eq. (11.1) is 〈δĤlat〉 ∼ (pa)sp, where p

is the typical three-momentum of the process. At small mass it is standard that
the associated coefficient is a benign numerical factor b(0). At large mass the
lattice action’s heavy-quark symmetry implies that it is a (generally different)
numerical factor b(∞). Our explicit results at tree level and our analysis of
higher orders show that b(mqa) is a smooth, gentle function connecting the two
extremes. In a nutshell, therefore, the characteristic measures of cutoff artifacts
are ΛQCDa and pa, but never mqa.

40



In general our actions have two hopping parameters. Then it is possible to
maintain equality between the rest mass (energy at zero momentum, eq. (4.6))
and the kinetic mass (inertial response, eq. (4.7)). In nonrelativistic systems,
however, there is a noteworthy simplification. Embracing the philosophy of the
static [ 8] or nonrelativistic [ 10, 11] theories, one can ignore the rest mass
and, hence, forgo one of the hopping parameters. The obvious application is to
set them equal, as in the Wilson [ 3] and Sheikholeslami-Wohlert [ 6] actions.
Therefore, the correct interpretation of numerical data generated with these
actions at mqa ∼ 1 is a nonrelativistic one. In particular, the hopping parameter
must be adjusted so that the kinetic mass agrees with the physical mass.

If one knows a priori that a quark is nonrelativistic, it is computationally
cheaper to use a two-component formalism [ 12]. But there are many instances in
which one would like to trace the mass dependence from the static limit down to,
say, the strange quark. One example is fig. 5, which, with reliable calculations,
should indicate how and where the heavy-quark expansion deteriorates.

The results of this paper can be extended in several ways. The couplings have
been computed at tree level with mean-field improvement. One-loop calculations
are desirable, and better still would be a nonperturbative determination, perhaps
in a mass-dependent generalization of ref. [ 40]. Once one is confident that
O(a) artifacts are under control, one can extend the analysis to dimension-six
interactions. Tree-level, O(a2) improvement should be manageable; beyond tree
level the bothersome four-fermion interactions enter the fray.

One would like to use the actions presented here in Monte Carlo calcula-
tions of QCD. If one uses the O(v4)-improved action to compute the spectrum
of charmonium and bottomonium, then, without more tuning, one could calcu-
late properties of D and B mesons, including the electroweak matrix elements
needed to determine the unknown elements of the Cabibbo-Kobayashi-Maskawa
matrix.20 Note that for these matrix elements, as well as for the quark mass
in the MS scheme, a small lattice spacing is helpful to reduce perturbative cor-
rections. Once the lattice spacing is small enough so that mQa∼< 1, our for-
mulation is especially advantageous. The two-component nonrelativistic theory
breaks down as mQa gets smaller [ 11], yet the old small-mass theory would have
leading lattice artifacts of order αsmQa and (mQa)

2. Our improved action, on
the other hand, remains viable for any mass, and its cutoff effects are small, of
order αsΛQCDa and (ΛQCDa)

2. To obtain comparable accuracy through brute
force in the old theory, one would have to reduce the lattice spacing by a factor
of mQ/ΛQCD—about five for the charm quark. Even for a perfect algorithm the
savings in computer time is, therefore, a factor of 54.

20For relevant reviews, see ref. [ 41, 21].
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Table 5: Estimates of the size of the dimension-seven interactions that arise
in designing an action for quarkonia with an accuracy of mQv

4. (There are
many other interactions needed to ensure O((ΛQCDa)

4) accuracy in all-light and
heavy-light systems.)

Hn only light heavy-light quarkonia

Ψ̄(D2)2Ψ Λ4
QCD Λ4

QCD m4
Qv

4

Ψ̄D4
i Ψ Λ4

QCD Λ4
QCD m4

Qv
4
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A Quarkonium to O(v4)

This appendix extends the analysis of the main text to incorporate interactions
that contribute in quarkonium through O(v4). Naively, this would entail close
scrutiny of all interactions through O(p4), i.e. up to dimension seven. Some
dimension-seven bilinear interactions are listed in Table 5, with their magnitude
in quarkonium estimated by the velocity-counting rules of ref. [ 12]. Together
with Table 3, one sees that not all dimension-six and -seven interactions are
necessary to O(v4); this Appendix considers only the entries that are.

One must consider the dimension-six interaction

Sso = csoκs

∑

n

ψ̄nγ0[γ ·D,γ ·E]ψn, (A.1)

with coupling cso, and the dimension-six and -seven interactions

S4 = −2κs

∑

n

ψ̄n

[
c4Dγ ·D − 1

2
rsc4L△(3)

]
△(3)ψn, (A.2)

with couplings c4D and c4L. Further dimension-six and -seven interactions con-
tribute in O(v6) or higher [ 12]. We discuss the adjustment of cso in eq. (A.1)
in sect. A.1, and the adjustment of c4D and c4L in eq. (A.2) in sect. A.2.

The discretization of the covariant difference D and Laplacian △(3) also must
be improved, to remove Ψ̄γiD

3
i Ψ and Ψ̄D4

i Ψ, respectively. These interactions
break rotational invariance, and we treat them in sect. A.2.
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A.1 Chromoelectric interactions to O(v4)

It is easiest to treat the “spin-orbit” interaction Sso in the Hamiltonian formalism
of sect. 5. The coupling cso can only appear in a dimension-six term implied by
the ellipsis in eq. (5.16). The spin-orbit Hamiltonian is

Ĥso = a2bso(m0a)
ˆ̄Ψγ0[γ ·D,γ ·E]Ψ̂. (A.3)

Under the two-parameter Foldy-Wouthuysen-Tani transformation of eq. (5.23)

b′so = bso − 1

2
ξ21 + bEξ1 + b1ξE − 2mqab0ξ1ξE . (A.4)

With bso it is possible to give an invariant involving bE :

BE = b21−4mqab0b1bE−8(mqab0)
2bso = b′1

2−4mqab
′
0b
′
1b
′
E−8(mqab

′
0)

2b′so, (A.5)

and one wants BE = 1. Just as the redundancy associated with the Foldy-
Wouthuysen-Tani parameter ξ1 intertwines the mass dependence of ζ and rs,
the redundancy associated with the other Foldy-Wouthuysen-Tani parameter ξE
intertwines the mass dependence of cE and cso too.

Assuming a discretization of Sso that resides on two timeslices only, it is
straightforward to generalize the transfer-matrix construction to the action S0 +
SB + SE + Sso. After expanding the transfer matrix in powers of a one finds

bso = − 1

2
(1 − cE)ζ2f2(m0) +

csoζ

2(1 +m0)
. (A.6)

Combining eqs. (A.5), (5.29), and (A.6) and setting BE = 1 yields the mass-
dependent condition

cE =
ζ2 − 1

m0(2 +m0)
+

rsζ

1 +m0
+
r2sm0(2 +m0)

4(1 +m0)2
+
csom0(2 +m0)

ζ(1 +m0)
. (A.7)

Here the rest mass M1 has been eliminated in favor of the kinetic mass M2 as
appropriate to the nonrelativistic interpretation of sect. 9.

The redundant direction associated to ξE permits a free choice of cso. In our
framework, which stresses a smooth matching to the massless limit, the most
convenient choice is probably cso = 0. But for purely nonrelativistic applications
ref. [ 12] would choose cE = 0 and ζcso ∝ m−2

q . Other possibilities correspond
to the special choice for rs in eq. (5.35). Then eq. (A.7) reduces to

cE = 1 + 2 log(1 +m0)cso. (A.8)

The further special case corresponding to ξE = 0 is cE = 1 (independent of m0a)
and cso = 0.
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A.2 Kinetic energy to O(v4)

The interaction S4 produces corrections to the kinetic energy. It is easiest to
analyze from the energy-momentum relation, as in sect. 4. Expanding eq. (4.4)
to O(p4) yields

E = M1 +
p2

2M2
− 1

6w4a
2
∑

i

p4
i −

(p2)2

8M3
4

+ . . . , (A.9)

where

M4 = −
(

∂4E

∂p2
i ∂p

2
j

)−1/3

pp=0

, i 6= j (A.10)

and

w4 = −1

4

∂4E

∂p4
i

∣∣∣∣∣
pp=0

− 3

4M3
4

. (A.11)

The relativistic mass shell satisfies M4 = M2 = M1, and a nonrelativistic mass
shell with leading relativistic correction satisfies M4 = M2. In both cases rota-
tional invariance requires w4 = 0.

A straightforward way is enforce w4 = 0 is to take an improved covariant
difference

aDi = 2
3(Ti − T−i) − 1

12 (T 2
i − T 2

−i) (A.12)

and an improved covariant Laplacian

a2△(3) =
∑

i

(
4
3(Ti + T−i − 2) − 1

12(T 2
i + T 2

−i − 2)
)
. (A.13)

The coefficients are chosen so that the Fourier transforms have no p3
i or

∑
i p

4
i

terms, respectively. Then (at tree-level) w4 = 0 automatically.
Since S4 contains no higher time derivatives, the transfer-matrix construction

proceeds as usual. After deriving M4 for S0 + S4 (M1 and M2 are unchanged),
one finds M4 = M2 at tree level if the couplings c4D and c4L obey

4ζ2c4D(1 +m0) + rsζc4Lm0(2 +m0) =

+
ζ4(1 +m0)[2(1 − ζ2) +m0(2 +m0)]

m2
0(2 +m0)2

+
rsζ

3[2(1 +m0)
2 − 3ζ2]

m0(2 +m0)

+
r2sζ

2[m0(2 +m0) − 6ζ2]

4(1 +m0)
− r3sζ

3m0(2 +m0)

4(1 +m0)2
.

(A.14)

This result holds whether ζ is tuned so that M1 = M2 or not. As with ζ and
cE , only the massless limit of c4D is unambiguous. For the full mass dependence
the redundant c4L must be specified, for example c4L = 0.
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It is instructive to look explicitly at the consequences of omitting S4 from
Monte Carlo calculations. With unimproved D and △(3) and no S4

w4 =
2ζ2

m0(2 +m0)
+

rsζ

4(1 +m0)
, (A.15)

and

1

M3
4

=
8ζ4

m3
0(2 +m0)3

+
4ζ3[ζ + 2rs(1 +m0)]

m2
0(2 +m0)2

+
r2sζ

2

(1 +m0)2
. (A.16)

The rotational-invariance breaking artifact is, thus, O(p4
i a

2/mq) for mqa large
and small. The rotationally invariant, relativity-breaking artifact is O(p4a2/mq)
at small mqa, and O(p4a1/m2

q) at large mqa.

A.3 Electroweak operators

For electroweak decays of quarkonia to O(v4), one needs a higher-dimensional
generalization of eq. (7.8),

Ψ(x) = eM1a/2
[
1 + ad1γ ·D + 1

2
a2d2△(3)

+ i

2
a2dBΣ·B + 1

2
a2dEα·E

]
ψ(x).

(A.17)

The d’s are easiest to derive from the Foldy-Wouthuysen-Tani transformed field.
Combining eqs. (5.9) and (5.23)

Ψ(x) = exp(aξ1γ ·D + a2ξEα·E)eM/2ψ(x), (A.18)

where ξ1 and ξE parameterize the solution of the tuning conditions. Expanding
the cumbersome exponentials to O(a2[p2,B,E]) and eliminating ξ1 and ξE in
favor of the couplings ζ, rs, cB , and cE , one finds

d2 = d2
1 −

rsζ

2(1 +m0)
,

dB = d2
1 −

cBζ

2(1 +m0)
,

dE =
ζ(1 − cE)(1 +m0)

m0(2 +m0)
− d1

M2
,

(A.19)

and d1 as in eq. (7.10). In eqs. (A.19) the kinetic mass M2 has been substituted
for the rest massM1. Thus, these formulae remain valid under the nonrelativistic
interpretation explained in sect. 9.
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B Combining Exponents

This appendix presents a proof of eq. (5.26), i.e. that the functions f1 and f2

are given by the expressions in eq. (5.28). If H0, HI , and H†I were to commute,
it would be trivial to combine the exponents. They do not, so the combined
exponent depends on their commutators as well. The commutators are

[Ĥ0, ĤI ] = −2M1ĤI + O(p3a3),

[Ĥ0, Ĥ
†
I ] = 2M1Ĥ

†
I + O(p3a3),

[ĤI , Ĥ
†
I ] = −ζ2 ˆ̄ΨΘ2Ψ̂ + O(p4a4).

(B.1)

To obtain the last commutator we have written DU = (D − 1

2
E)cont and

DV = (D + 1

2
E)cont, and we have neglected higher powers of Econt. The op-

erators Θ and △(3) carry one and two powers of pa, respectively; thus M =
M1 − 1

2
rsζe

−M1△(3) +O(p4a4). Note that although [ĤI , Ĥ
†
I ] is O(p2a2), further

commutators such as [Ĥ0, [ĤI , Ĥ
†
I ]] are at least O(p4a4).

Instead of solving the field theory, it is enough to consider a toy model
with two degrees of freedom, a fermion (annihilated by â) and an anti-fermion
(annihilated by b̂). With discrete time the action is

S =
∑

t

a†t(∂
−
0 +m)at + b†t(∂

−
0 +m)bt − iϑ

(
a†tb
†
t − btat

)
. (B.2)

The transfer matrix has the same form as eq. (5.25) with

Ĥ0 = log(1 +m)
(
Â†Â+ B̂†B̂

)
, ĤI = iϑB̂Â, (B.3)

where A = (1 +m)1/2a, and B = (1 +m)1/2b. With the identification of ϑ with

ζΘ and m with eM − 1, the operators Ĥ0 and Ĥ
(†)
I of the toy model and the

field theory have the same algebraic structure.
This model has only four states, the vacuum, fermion, anti-fermion, and a

fermion–anti-fermion state. The strategy is to work out the transfer matrix
elements explicitly, and then take the logarithm. These steps are easier in the
Grassman-number approach, where the matrix elements of the transfer matrix
are the coefficients of monomials in (Grassman numbers) A, A†, B, and B†,
when

T (A†, B†;A,B) = eiϑa†b†ea
†a+b†be−iϑba (B.4)

is expressed as a polynomial. Up to factors analogous to det(2κtB), which we
can drop without loss, the transfer matrix in the neutral sector is

〈i|T̂ |j〉 =

(
(1 +m) −iϑ
iϑ (1 + ϑ2)/(1 +m)

)
. (B.5)

46



Writing T = V DV †, whereD is diagonal, the Hamiltonian isH = −V log(D)V †.
Expanding the result to O(ϑ2) one finds

〈i|Ĥ |j〉 =

(
−m1 + f2(m)ϑ2 if1(m)ϑ

−if1(m)ϑ m1 − f2(m)ϑ2

)
, (B.6)

where em1 = 1 +m. Expressed in terms of Fock-space operators

Ĥ = [m1 − f2(m)ϑ2]
(
Â†Â− B̂B̂†

)
− if1(m)ϑ

(
Â†B̂† − B̂Â

)
. (B.7)

Substituting m1 and ϑ for M and ζΘ completes the derivation of eq. (5.26).

C Spinors, Creation and Annihilation Operators

This Appendix gives the construction of spinors and of creation and annihila-
tion operators in d = 4 space-time dimensions. These are needed to calculate
amplitudes of on-shell fermions via Feynman diagrams.

Consider an arbitrary bilinear fermion action

S =
∑

x,y

ψ̄(x)
(
γµK̃µ(x, y) + L̃(x, y)

)
ψ(y) (C.1)

with an implied sum over µ. We assume that K̃µ and L̃ are translation in-
variant. With parity L̃(x, y) is symmetric, and K̃µ(x, y) anti-symmetric, under
interchange of x and y. The field ψ(x) has the following equation of motion

∑

y

(
γµK̃µ(x, y) + L̃(x, y)

)
ψ(y) = 0. (C.2)

In such a free theory, one searches for solutions of the form ψ(x) = eip0t+ipp·xxu(p).
The four-component spinor u(p) must satisfy

(iγµKµ(p) + L(p))u(p) = 0. (C.3)

The Fourier transforms Kµ(p) and L(p) are real functions of p by parity and
translation invariance. Multiplying by −iγµKµ(p)+L(p) one sees that solutions
exist only if

K2(p) + L2(p) = 0. (C.4)

This mass shell coincides with the one derived from the propagator, as in sect. 4.
The actions that we consider all have the Wilson time derivative. Writing

p = (p0,p), one then has

K0(p) = sin p0,

Ki(p) = Ki(p)

L(p) = µ(p) − cos p0;

(C.5)
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Ki(p) is an odd, and µ(p) an even, function of p. Thus, solutions exist only
when

p0 = ±iE(p), (C.6)

where

coshE(p) =
1 + µ(p)2 + K2

2µ(p)
≥ 1. (C.7)

It is convenient to label the solutions of eq. (C.3) by the sign in eq. (C.6). For
each sign there are two solutions, u(±1,p) and u(±2,p). Setting p = 0 the
equation of motion simplifies to

sinhM1(−γ0 sign ξ + 1)u(ξ,0) = 0, (C.8)

where M1 = E(0) = log[µ(0)]. Choosing γ0 as in eq. (2.6) the four solutions at
p = 0 are

u1(1,0) = u2(2,0) = u3(−1,0) = u4(−2,0) = 1, (C.9)

where the subscript is the Dirac index, and all other components are zero. Direct
substitution verifies that

u(ξ,p) =
−iγµKµ + L√
2L(L+ sinhE)

u(ξ,0) (C.10)

solves eq. (C.3) for p 6= 0, if sin p0 = i sign ξ sinhE and L = µ(p) − coshE(p).
The denominator yields the normalization convention in eq.(C.14).

The two solutions with “negative energy” (ξ < 0) correspond to anti-particle
states. As usual we introduce

v(ξ,p) = u(−ξ,−p), ξ = 1, 2. (C.11)

The spinors v obey the equation of motion

(−iγµKµ(p) + L(p))v(p) = 0, (C.12)

which is solved by

v(ξ,p) =
+iγµKµ + L√
2L(L+ sinhE)

v(ξ,0), (C.13)

now with sin p0 = +i sinhE. From now on we shall use u and v with ξ ∈ {1, 2}
and sin p0 = +i sinhE only.

The spinors obey the conventional orthonormality properties

ū(ξ′,p)u(ξ,p) = −v̄(ξ′,p)v(ξ,p) = δξ′ξ,

ū(ξ′,p)v(ξ,p) = v̄(ξ′,p)u(ξ,p) = 0,
(C.14)
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where ū = u†γ0 and v̄ = v†γ0. Moreover,

ū(ξ′,p)γ0u(ξ,p) = v̄(ξ′,p)γ0v(ξ,p) = δξ′ξ sinhE

µ(p) − coshE
,

ū(ξ′,p)γ0v(ξ,−p) = v̄(ξ′,−p)γ0u(ξ,p) = 0.

(C.15)

In a relativistic theory E/m would appear here.
The general solution to eq. (C.2) is a linear superposition

ψ(t,x) =

∫
d3p

(2π)3
N (p)

2∑

ξ=1

[
b(ξ,p)u(ξ,p)e+ip0t+ipp·xx

+ d†(ξ,p)v(ξ,p)e−ip0t−ipp·xx
] (C.16)

with sin p0 = i sinhE. The normalization factor N (p) is fixed below, after
invoking this expansion for Hilbert-space operators. The operator-valued ex-
pansion coefficients b̂†(ξ,p) and d̂†(ξ,p) create particle and anti-particle states
respectively:

|q(ξ,p)〉 = b̂†(ξ,p)|0〉, |q̄(ξ,p)〉 = d̂†(ξ,p)|0〉, (C.17)

where |0〉 is the Fock state annihilated by all b̂(ξ,p) and d̂(ξ,p). Assuming the
vacuum is normalized to 〈0|0〉 = 1, the fermion states are normalized to

〈q(ξ′,p′)|q(ξ,p)〉 = (2π)3δ(p′ − p)δξ′ξφ(p), (C.18)

and similarly for the anti-fermion state |q̄(ξ,p)〉, if and only if the anti-commu-
tator

{b̂(ξ′,p′), b̂†(ξ,p)} = (2π)3δ(p′ − p)δξ′ξφ(p), (C.19)

and similarly for {d̂(ξ′,p′), d̂†(ξ,p)}.
The transfer-matrix construction provides the anti-commutation relation for

ψ̂(t,x) and ˆ̄ψ(t,x). Eq. (5.9) becomes

Ψ(t,x) =
∑

yy

∫
d3p

(2π)3
e+ipp·(xx−yy)µ(p)1/2ψ(t,y). (C.20)

After inverting the Fourier series and evaluating the anti-commutators one finds

φ(p) =
µ(p) − coshE

µ(p)N 2(p) sinhE
. (C.21)

The convention φ = 1 is the most convenient.21 Then

N (p) =

(
µ(p) − coshE

µ(p) sinhE

)1/2

. (C.22)

21Another candidate is the relativistic convention, which is not at all natural in nonpertur-
bative calculations. How can one normalize to φ =

√
m2 + pp2/m without solving the theory?

Even here, in a footnote to an appendix, one may not forget that the aim of these perturbative
calculations is to understand, interpret, and improve the nonperturbative calculations.
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Note that N (0) = e−M1/2.
With all this machinery we can now state the main result of this appendix.

The Feynman rules for vertices in standard references (e.g. ref. [ 42] for the
Wilson action) are derived from the functional integral, i.e. using ψ(x). To
obtain on-shell matrix elements, these rules must be supplemented by rules for
contractions between ψ(x) and conventionally normalized external states. They
are

· · ·
 
ψα(t,x) · · · | · · · q(ξ,p) · · ·〉 7→ N (p)uα(ξ,p)e−Et+ipp·xx ,

· · ·
 
ψ̄α(t,x) · · · | · · · q̄(ξ,p) · · ·〉 7→ N (p)v̄α(ξ,p)e−Et+ipp·xx ,

〈· · ·
 
q(ξ,p) · · · | · · · ψ̄α(t,x) · · · 7→ N (p)ūα(ξ,p)e+Et−ipp·xx ,

〈· · ·
 
q̄(ξ,p) · · · | · · ·ψα(t,x) · · · 7→ N (p)vα(ξ,p)e+Et−ipp·xx ,

(C.23)

multiplied by the sign appropriate to the anti-commutation implied by the · · · .
For all states the momentum flow is physical, i.e. with (against) the charge flow
for particles (anti-particles).

For the specific action discussed in this paper, S0, one finds (restoring a)

Ki(p) = ζ sin pia

µ(p) = 1 +m0a+ 1

2
rsζp̂

2a2.
(C.24)

The chromomagnetic and chromoelectric interactions do not modify these func-
tions, but the kinetic corrections in Appendix A do.

It is useful to record the small p expansion of the external line factor here:

N (p)ulat(ξ,p) = e−M1a/2

[
1 − iζγ ·pa

2 sinhM1a
− p2

8M2
X

]
u(ξ,0) + O(p3), (C.25)

where the subscript “lat” abbreviates “lattice,” and MX is an “external line
mass.” For S0

1

M2
Xa

2
=

ζ2

sinh2M1a
+

2rsζ

eM1a
. (C.26)

For a unified treatment of fermions and anti-fermions in initial and final states, it
is handy to note that eq. (C.25) holds for positive and negative ξ. The analogous
expression for N (p)vlat(ξ,p) then follows from eq. (C.11).

Unless m0a≪ 1 the lattice external line factor N (p)ulat(ξ,p) deviates from
the relativistic one. With our normalization conventions the relativistic analog
of eq. (C.25) is

√
mq

E
urel(ξ,p) =

[
1 − iγ ·p

2mq
− p2

8m2
q

]
u(ξ,0) + O(p3), (C.27)

where the subscript “rel” abbreviates “relativistic.” The rotations in sects. 7
and A.3 are needed to convert the bracket of eq. (C.25) into the bracket of
eq. (C.27), assuming mq = M2.
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